Priscilla K Brastianos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9322015/publications.pdf Version: 2024-02-01

		31902	31759
213	12,625	53	101
papers	citations	h-index	g-index
221	221	221	15324
221	221	221	15521
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell, 2019, 178, 835-849.e21.	13.5	1,408
2	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
3	Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017, 355, .	6.0	743
4	Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nature Genetics, 2013, 45, 285-289.	9.4	532
5	Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nature Genetics, 2014, 46, 161-165.	9.4	408
6	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	13.7	320
7	Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role forÂcathepsin S. Nature Cell Biology, 2014, 16, 876-888.	4.6	300
8	Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. Journal of Clinical Oncology, 2022, 40, 492-516.	0.8	261
9	Oncogenic PI3K mutations are as common as <i>AKT1</i> and <i>SMO</i> mutations in meningioma. Neuro-Oncology, 2016, 18, 649-655.	0.6	221
10	Brain metastasis. Nature Reviews Cancer, 2020, 20, 4-11.	12.8	221
11	Pervasive chromosomal instability and karyotype order in tumour evolution. Nature, 2020, 587, 126-132.	13.7	221
12	Inhibitory CD161 receptor identified in glioma-infiltrating TÂcells by single-cell analysis. Cell, 2021, 184, 1281-1298.e26.	13.5	210
13	The Evolving Landscape of Brain Metastasis. Trends in Cancer, 2018, 4, 176-196.	3.8	194
14	Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor <i>MYBL1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8188-8193.	3.3	188
15	DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro-Oncology, 2019, 21, 901-910.	0.6	184
16	Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. Journal of the National Cancer Institute, 2016, 108, djv310.	3.0	182
17	Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nature Genetics, 2020, 52, 371-377.	9.4	177
18	Leptomeningeal metastasis from systemic cancer: Review and update on management. Cancer, 2018, 124, 21-35.	2.0	175

PRISCILLA K BRASTIANOS

#	Article	IF	CITATIONS
19	Tuberculosis-associated haemophagocytic syndrome. Lancet Infectious Diseases, The, 2006, 6, 447-454.	4.6	154
20	Alectinib Salvages CNS Relapses in ALK-Positive Lung Cancer Patients Previously Treated with Crizotinib and Ceritinib. Journal of Thoracic Oncology, 2015, 10, 232-236.	0.5	150
21	Advances in meningioma genetics: novel therapeutic opportunities. Nature Reviews Neurology, 2018, 14, 106-115.	4.9	148
22	Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival. Clinical Cancer Research, 2017, 23, 6650-6660.	3.2	141
23	Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro-Oncology, 2020, 22, 757-772.	0.6	131
24	Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget, 2015, 6, 4704-4716.	0.8	127
25	Alterations in Pericyte Subpopulations Are Associated with Elevated Blood–Tumor Barrier Permeability in Experimental Brain Metastasis of Breast Cancer. Clinical Cancer Research, 2016, 22, 5287-5299.	3.2	126
26	Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications. Neuro-Oncology, 2019, 21, 571-584.	0.6	114
27	Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 627-642.	1.5	102
28	Advances in multidisciplinary therapy for meningiomas. Neuro-Oncology, 2019, 21, i18-i31.	0.6	102
29	Imaging and diagnostic advances for intracranial meningiomas. Neuro-Oncology, 2019, 21, i44-i61.	0.6	100
30	Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology, 2017, 19, now235.	0.6	99
31	Landscape of Genomic Alterations in Pituitary Adenomas. Clinical Cancer Research, 2017, 23, 1841-1851.	3.2	94
32	Molecular and translational advances in meningiomas. Neuro-Oncology, 2019, 21, i4-i17.	0.6	92
33	Reactive astrocytic S1P3 signaling modulates the blood–tumor barrier in brain metastases. Nature Communications, 2018, 9, 2705.	5.8	91
34	Concurrent therapy with immune checkpoint inhibitors and TNF $\hat{l}\pm$ blockade in patients with gastrointestinal immune-related adverse events. , 2019, 7, 226.		89
35	Intratumoral heterogeneity and <i>TERT</i> promoter mutations in progressive/higher-grade meningiomas. Oncotarget, 2017, 8, 109228-109237.	0.8	89
36	Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Surgery in the Management of Adults With Metastatic Brain Tumors. Neurosurgery, 2019, 84, E152-E155.	0.6	87

#	Article	IF	CITATIONS
37	Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. , 2021, 9, e002890.		87
38	Clinical Activity of Alectinib in Advanced RET -Rearranged Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 2027-2032.	0.5	85
39	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	13.5	85
40	Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nature Medicine, 2020, 26, 1280-1284.	15.2	83
41	Updates in prognostic markers for gliomas. Neuro-Oncology, 2018, 20, vii17-vii26.	0.6	78
42	MYD88 L265P mutation and CDKN2A loss are early mutational events in primary central nervous system diffuse large B-cell lymphomas. Blood Advances, 2019, 3, 375-383.	2.5	77
43	Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 378-387.	0.9	75
44	Radiation Treatment for WHO Grade II and III Meningiomas. Frontiers in Oncology, 2013, 3, 227.	1.3	71
45	Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade gliomas: a systematic review and meta-analysis. Journal of Neuro-Oncology, 2011, 105, 325-335.	1.4	70
46	Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro-Oncology, 2019, 21, 1401-1411.	0.6	70
47	Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 2015, 1, 662.	3.4	68
48	Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors. , 2019, 7, 265.		68
49	Evolution of delayed resistance to immunotherapy in a melanoma responder. Nature Medicine, 2021, 27, 985-992.	15.2	67
50	DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathologica, 2018, 136, 779-792.	3.9	66
51	Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget, 2014, 5, 10596-10606.	0.8	65
52	Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathologica Communications, 2014, 2, 167.	2.4	65
53	Subtype switching in breast cancer brain metastases: a multicenter analysis. Neuro-Oncology, 2020, 22, 1173-1181.	0.6	65
54	Recent advances in managing brain metastasis. F1000Research, 2018, 7, 1772.	0.8	63

#	Article	IF	CITATIONS
55	ENDOCRINE TUMORS: BRAF V600E mutations in papillary craniopharyngioma. European Journal of Endocrinology, 2016, 174, R139-R144.	1.9	61
56	Alectinib Dose Escalation Reinduces Central Nervous System Responses in Patients with Anaplastic Lymphoma Kinase–Positive Non–Small Cell Lung Cancer Relapsing on Standard Dose Alectinib. Journal of Thoracic Oncology, 2016, 11, 256-260.	0.5	59
57	Targeted treatment of papillary craniopharyngiomas harboring BRAF V600E mutations. Cancer, 2019, 125, 2910-2914.	2.0	58
58	Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathologica Communications, 2020, 8, 171.	2.4	58
59	BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathologica, 2016, 131, 147-150.	3.9	57
60	The Dual PI3K/mTOR Pathway Inhibitor GDC-0084 Achieves Antitumor Activity in <i>PIK3CA</i> -Mutant Breast Cancer Brain Metastases. Clinical Cancer Research, 2019, 25, 3374-3383.	3.2	57
61	Life after surgical resection of a meningioma: a prospective cross-sectional study evaluating health-related quality of life. Neuro-Oncology, 2019, 21, i32-i43.	0.6	56
62	HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nature Communications, 2020, 11, 6311.	5.8	55
63	Predictive molecular markers in metastases to the central nervous system: recent advances and future avenues. Acta Neuropathologica, 2014, 128, 879-891.	3.9	54
64	Clinical Discussion and Review of the Management of Brain Metastases. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 1153-1164.	2.3	51
65	Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor. Npj Precision Oncology, 2017, 1, 5.	2.3	49
66	The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro-Oncology, 2019, 21, 1498-1508.	0.6	49
67	Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. Journal of Neurosurgery, 2017, 127, 438-444.	0.9	48
68	Molecular typing of meningiomas by desorption electrospray ionization mass spectrometry imaging for surgical decision-making. International Journal of Mass Spectrometry, 2015, 377, 690-698.	0.7	46
69	Systemic Therapy of Brain Metastases. Current Neurology and Neuroscience Reports, 2015, 15, 518.	2.0	46
70	Activity of Adagrasib (MRTX849) in Brain Metastases: Preclinical Models and Clinical Data from Patients with KRASG12C-Mutant Non–Small Cell Lung Cancer. Clinical Cancer Research, 2022, 28, 3318-3328.	3.2	45
71	The impact of histopathology and NAB2–STAT6 fusion subtype in classification and grading of meningeal solitary fibrous tumor/hemangiopericytoma. Acta Neuropathologica, 2019, 137, 307-319.	3.9	44
72	The Development of Brain Metastases in Patients with Renal Cell Carcinoma: Epidemiologic Trends, Survival, and Clinical Risk Factors Using a Population-based Cohort. European Urology Focus, 2019, 5, 474-481.	1.6	44

#	Article	IF	CITATIONS
73	Genetic Characterization of Brain Metastases in the Era of Targeted Therapy. Frontiers in Oncology, 2017, 7, 230.	1.3	43
74	Treatment of brain metastases in the modern genomic era. , 2017, 170, 64-72.		40
75	Genotype-targeted local therapy of glioma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8388-E8394.	3.3	40
76	Clinical Activity and Safety of Cabozantinib for Brain Metastases in Patients With Renal Cell Carcinoma. JAMA Oncology, 2021, 7, 1815.	3.4	40
77	Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro-Oncology, 2022, 24, 1613-1646.	0.6	39
78	Increased risk of brain metastases in ovarian cancer patients with BRCA mutations. Gynecologic Oncology, 2019, 153, 568-573.	0.6	38
79	Upfront Surgical Resection of Melanoma Brain Metastases Provides a Bridge Toward Immunotherapy-Mediated Systemic Control. Oncologist, 2019, 24, 671-679.	1.9	36
80	Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions. Pigment Cell and Melanoma Research, 2020, 33, 527-541.	1.5	36
81	Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nature Communications, 2021, 12, 5954.	5.8	35
82	Primary Central Nervous System Lymphoma. Hematology/Oncology Clinics of North America, 2012, 26, 897-916.	0.9	33
83	Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathologica, 2020, 140, 89-93.	3.9	32
84	Management of Brain Metastases in Patients With Melanoma. Journal of Oncology Practice, 2016, 12, 536-542.	2.5	31
85	Profiles of brain metastases: Prioritization of therapeutic targets. International Journal of Cancer, 2018, 143, 3019-3026.	2.3	31
86	Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningiomas. Nature Communications, 2022, 13, 1325.	5.8	31
87	Solitary Thoracic Osteochondroma: Case Report and Review of the Literature. Neurosurgery, 2005, 56, E1379-E1379.	0.6	29
88	Emerging Immunotherapies in the Treatment of Brain Metastases. Oncologist, 2021, 26, 231-241.	1.9	29
89	Diagnosis and management of craniopharyngiomas in the era of genomics and targeted therapy. Neurosurgical Focus, 2016, 41, E2.	1.0	28
90	A Clinical Rule for Preoperative Prediction of BRAF Mutation Status in Craniopharyngiomas. Neurosurgery, 2019, 85, 204-210.	0.6	28

6

#	Article	IF	CITATIONS
91	Assessment of Effectiveness and Safety of Osimertinib for Patients With Intracranial Metastatic Disease. JAMA Network Open, 2020, 3, e201617.	2.8	28
92	Resolving the phylogenetic origin of glioblastoma via multifocal genomic analysis of pre-treatment and treatment-resistant autopsy specimens. Npj Precision Oncology, 2017, 1, 33.	2.3	27
93	Anticonvulsant prophylaxis and steroid use in adults with metastatic brain tumors: summary of SNO and ASCO endorsement of the Congress of Neurological Surgeons guidelines*. Neuro-Oncology, 2019, 21, 424-427.	0.6	27
94	Detection of Leptomeningeal Disease Using Cell-Free DNA From Cerebrospinal Fluid. JAMA Network Open, 2021, 4, e2120040.	2.8	27
95	Radiation Therapy for Brain Metastases: ASCO Guideline Endorsement of ASTRO Guideline. Journal of Clinical Oncology, 2022, 40, 2271-2276.	0.8	27
96	DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics, 2021, 19, 127-140.	1.5	26
97	Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nature Cancer, 2021, 2, 498-502.	5.7	26
98	Leptomeningeal Metastases from Solid Tumors: Recent Advances in Diagnosis and Molecular Approaches. Cancers, 2021, 13, 2888.	1.7	26
99	A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro-Oncology, 2016, 18, 1278-1287.	0.6	25
100	Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases. Nature Communications, 2021, 12, 5955.	5.8	25
101	Anticonvulsant Prophylaxis and Steroid Use in Adults With Metastatic Brain Tumors: ASCO and SNO Endorsement of the Congress of Neurological Surgeons Guidelines. Journal of Clinical Oncology, 2019, 37, 1130-1135.	0.8	22
102	Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncology, 2020, 16, 899-909.	1.1	22
103	Immune Checkpoint Inhibitors for Brain Metastases: A Primer for Neurosurgeons. Neurosurgery, 2020, 87, E281-E288.	0.6	22
104	A Novel Intravertebral Tumor Model in Rabbits. Neurosurgery, 2005, 57, 341-346.	0.6	21
105	Ipilimumab and craniotomy in patients with melanoma and brain metastases: a case series. Neurosurgical Focus, 2015, 38, E5.	1.0	20
106	Aneurysmal bone cysts of the sacrum: a report of ten cases and review of the literature. Iowa orthopaedic journal, The, 2009, 29, 74-8.	0.5	20
107	Turner syndrome and meningioma: Support for a possible increased risk of neoplasia in Turner syndrome. European Journal of Medical Genetics, 2014, 57, 269-274.	0.7	19
108	Phase II study of pembrolizumab in leptomeningeal carcinomatosis Journal of Clinical Oncology, 2018, 36, 2007-2007.	0.8	19

#	Article	IF	CITATIONS
109	Genomic Analysis of Posterior Fossa Meningioma Demonstrates Frequent AKT1 E17K Mutations in Foramen Magnum Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, 562-567.	0.4	18
110	Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunology Research, 2022, 10, 996-1012.	1.6	18
111	The toxicity of intrathecal bevacizumab in a rabbit model of leptomeningeal carcinomatosis. Journal of Neuro-Oncology, 2012, 106, 81-88.	1.4	17
112	Brain Metastasis: Clinical Implications of Branched Evolution. Trends in Cancer, 2016, 2, 332-337.	3.8	16
113	Enrichment of <i>HER2</i> Amplification in Brain Metastases from Primary Gastrointestinal Malignancies. Oncologist, 2019, 24, 193-201.	1.9	16
114	Genomic profiling of brain metastases: current knowledge and new frontiers. Chinese Clinical Oncology, 2015, 4, 22.	0.4	16
115	Brain metastasis from squamous cell carcinoma of the head and neck: a review of the literature in the genomic era. Neurosurgical Focus, 2018, 44, E11.	1.0	15
116	Clinical Validation of a Cell-Free DNA Gene Panel. Journal of Molecular Diagnostics, 2019, 21, 632-645.	1.2	15
117	Tumor Immune Microenvironment of Brain Metastases: Toward Unlocking Antitumor Immunity. Cancer Discovery, 2022, 12, 1199-1216.	7.7	14
118	New molecular targets in meningiomas: the present and the future. Current Opinion in Neurology, 2018, 31, 740-746.	1.8	13
119	Clinical significance of checkpoint regulator "Programmed death ligand-1 (PD-L1)―expression in meningioma: review of the current status. Journal of Neuro-Oncology, 2021, 151, 443-449.	1.4	13
120	A rapid genotyping panel for detection of primary central nervous system lymphoma. Blood, 2021, 138, 382-386.	0.6	13
121	Central Nervous System–Specific Outcomes of Phase 3 Randomized Clinical Trials in Patients With Advanced Breast Cancer, Lung Cancer, and Melanoma. JAMA Oncology, 2021, 7, 1062.	3.4	13
122	An interdisciplinary consensus on the management of brain metastases in patients with renal cell carcinoma. Ca-A Cancer Journal for Clinicians, 2022, 72, 454-489.	157.7	13
123	Immunotherapy and targeted therapy in brain metastases: emerging options in precision medicine. CNS Oncology, 2017, 6, 139-151.	1.2	12
124	A Monoclonal Antibody Against β1 Integrin Inhibits Proliferation and Increases Survival in an Orthotopic Model of High-Grade Meningioma. Targeted Oncology, 2019, 14, 479-489.	1.7	12
125	Sporadic multiple meningiomas harbor distinct driver mutations. Acta Neuropathologica Communications, 2021, 9, 8.	2.4	12
126	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	3.9	12

#	Article	IF	CITATIONS
127	Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 147-165.	1.8	12
128	Vascular endothelial growth factor inhibitors in malignant gliomas. Targeted Oncology, 2010, 5, 167-174.	1.7	11
129	PLEKHA5: A Key to Unlock the Blood–Brain Barrier?. Clinical Cancer Research, 2015, 21, 1978-1980.	3.2	11
130	Emerging Gene Fusion Drivers in Primary and Metastatic Central Nervous System Malignancies: A Review of Available Evidence for Systemic Targeted Therapies. Oncologist, 2018, 23, 1063-1075.	1.9	10
131	Targeting Molecular Pathways in Intracranial Metastatic Disease. Frontiers in Oncology, 2019, 9, 99.	1.3	10
132	Anti-EGFR VHH-armed death receptor ligand–engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Science Advances, 2021, 7, .	4.7	10
133	Central Nervous System Metastases. Hematology/Oncology Clinics of North America, 2022, 36, 161-188.	0.9	10
134	Toward Precision Medicine in Brain Metastases. Seminars in Neurology, 2018, 38, 095-103.	0.5	9
135	Sequencing brain metastases and opportunities for targeted therapies. Pharmacogenomics, 2017, 18, 585-594.	0.6	8
136	TERT Alterations in Progressive Treatment-Resistant Meningiomas. Neurosurgery, 2018, 65, 66-68.	0.6	8
137	Modern Management of Central Nervous System Metastases in the Era of Targeted Therapy and Immune Oncology. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, e59-e69.	1.8	8
138	Implementation of <i>TERT</i> promoter mutations improve prognostication of the WHO classification in meningioma. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	8
139	Consensus core clinical data elements for meningiomas (v2021.1). Neuro-Oncology, 2022, 24, 683-693.	0.6	7
140	VEGF inhibitors in brain tumors. Clinical Advances in Hematology and Oncology, 2009, 7, 753-60, 768.	0.3	7
141	Case-Based Review: meningioma. Neuro-Oncology Practice, 2016, 3, 120-134.	1.0	6
142	Precision Medical Approaches to the Diagnoses and Management of Brain Metastases. Current Treatment Options in Oncology, 2019, 20, 49.	1.3	6
143	Cross-sectional survey of patients, caregivers, and physicians on diagnosis and treatment of brain metastases. Neuro-Oncology Practice, 2021, 8, 662-673.	1.0	6
144	Precision Medicine for Primary Central Nervous System Tumors: Are We There Yet?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 158-167.	1.8	5

Priscilla K Brastianos

#	Article	IF	CITATIONS
145	Systemic therapy following craniotomy in patients with a solitary breast cancer brain metastasis. Breast Cancer Research and Treatment, 2020, 180, 147-155.	1.1	5
146	Anatomy-oriented stereotactic approach to cerebrospinal fluid collection in mice. Brain Research, 2022, 1774, 147706.	1.1	5
147	Novel approaches in genetic characterization and targeted therapy for brain metastases. Discovery Medicine, 2016, 22, 237-250.	0.5	5
148	Brain Metastases from Biliary Tract Cancers: A Case Series and Review of the Literature in the Genomic Era. Oncologist, 2020, 25, 447-453.	1.9	4
149	Craniopharyngiomas, including Recurrent Cases, Lack TERT Promoter Hotspot Mutations. Neurologia Medico-Chirurgica, 2021, 61, 385-391.	1.0	4
150	Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. Neuro-Oncology, 2022, 24, 331-357.	0.6	4
151	Seminoma with Neoplastic Meningitis Treated with Craniospinal Irradiation. Oncologist, 2018, 23, 1385-1387.	1.9	3
152	A broad perspective on evaluating bias in the neuro-oncology workplace. Neuro-Oncology, 2021, 23, 498-499.	0.6	3
153	Genomic characterization of lung tumors and metastatic (Met) sites in advanced (Adv) NSCLC Journal of Clinical Oncology, 2019, 37, 2014-2014.	0.8	2
154	<i>TERT</i> promoter mutations in progressive treatment-resistant meningiomas Journal of Clinical Oncology, 2017, 35, 2047-2047.	0.8	2
155	TERT rearrangements to identify a subset of aggressive meningiomas Journal of Clinical Oncology, 2018, 36, e14028-e14028.	0.8	2
156	Precision medicine biomarkers in brain metastases: applications, discordances, and obstacles. Neuro-Oncology Advances, 2021, 3, v35-v42.	0.4	2
157	Preclinical Solid Tumor Models to Study Novel Therapeutics in Brain Metastases. Current Protocols, 2021, 1, e284.	1.3	2
158	DDRE-02. THERAPEUTIC TARGETING OF BRAIN METASTASIS WITH ERK INHIBITOR LY3214996 USING A NOVEL IN VIVO MODEL OF LUNG-TO-BRAIN METASTASIS. Neuro-Oncology, 2020, 22, ii61-ii61.	0.6	2
159	TMOD-05. EXTRACRANIAL TUMORS INFLUENCE INTRACRANIAL RESPONSE TO IMMUNE CHECKPOINT INHIBITORS IN PRE-CLINICAL MODELS OF MELANOMA BRAIN METASTASIS. Neuro-Oncology, 2020, 22, ii228-ii228.	0.6	2
160	Wiped Out. American Journal of Medicine, 2009, 122, 1004-1006.	0.6	1
161	Kairos. Journal of Clinical Oncology, 2012, 30, 1562-1562.	0.8	1
162	SMO mutant olfactory groove meningiomas—the next in line for targeted therapy. Neuro-Oncology, 2017, 19, 305-306.	0.6	1

#	Article	IF	CITATIONS
163	CMET-20. EVIDENCE OF CNS RESPONSE OF PEMBROLIZUMAB FOR LEPTOMENINGEAL CARCINOMATOSIS AT A SINGLE CELL RESOLUTION. Neuro-Oncology, 2018, 20, vi57-vi58.	0.6	1
164	CSIG-29. THE DUAL PI3K/mTOR-PATHWAY INHIBITOR GDC-0084 ACHIEVES ANTITUMOR ACTIVITY IN BREAST CANCER BRAIN METASTASES IN VITRO AND IN VIVO. Neuro-Oncology, 2018, 20, vi49-vi49.	0.6	1
165	NFM-11. PEDIATRIC MENINGIOMAS ARE MOLECULARLY DISTINCT FROM ADULT COUNTERPARTS. Neuro-Oncology, 2018, 20, i144-i145.	0.6	1
166	INNV-27. THE IMPACT OF A DEDICATED MULTIDISCIPLINARY TUMOR BOARD ON CARE FOR PATIENTS WITH BRAIN METASTASES. Neuro-Oncology, 2019, 21, vi135-vi136.	0.6	1
167	INNV-19. SURVEYING BIAS IN NEURO-ONCOLOGY AND SOCIETY FOR NEURO ONCOLOGY (SNO) MEMBERS: GENDER AND BEYOND. Neuro-Oncology, 2019, 21, vi134-vi134.	0.6	1
168	GENE-63. GENOMIC CHARACTERIZATION OF HUMAN BRAIN METASTASES IDENTIFIES NOVEL DRIVERS OF LUNG ADENOCARCINOMA PROGRESSION. Neuro-Oncology, 2019, 21, vi111-vi111.	0.6	1
169	62. PRESENCE OF EXTRACRANIAL TUMORS INFLUENCES RESPONSE TO IMMUNE CHECKPOINT INHIBITORS IN A PRE-CLINICAL MODEL OF MELANOMA BRAIN METASTASIS. Neuro-Oncology Advances, 2020, 2, ii13-ii13.	0.4	1
170	Response to Letter to Editor. Neuro-Oncology, 2020, 22, 1706-1707.	0.6	1
171	Initial Approach to the Patient with Multiple Newly Diagnosed Brain Metastases. Neurosurgery Clinics of North America, 2020, 31, 505-513.	0.8	1
172	Leptomeningeal Metastasis. , 2012, , 187-200.		1
173	Clinically-actionable Mutations in Posterior Skull Base Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2017, 78, S1-S156.	0.4	1
174	Contemporary incidence and epidemiologic trends of brain metastases at renal cell carcinoma diagnosis Journal of Clinical Oncology, 2017, 35, 529-529.	0.8	1
175	HER2 positivity in brain metastases from gastrointestinal primary malignancies Journal of Clinical Oncology, 2018, 36, 61-61.	0.8	1
176	MYD88 L265P mutation and CDKN2A loss as early mutational events in primary central nervous system lymphomas Journal of Clinical Oncology, 2018, 36, e14041-e14041.	0.8	1
177	IMMU-01. SINGLE CELL SEQUENCING OF MELANOMA BRAIN METASTASES UNVEILS HETEROGENEITY OF THE TUMOR MICROENVIRONMENT IN RESPONSE TO IMMUNE CHECKPOINT BLOCKADE. Neuro-Oncology, 2020, 22, ii104-ii104.	0.6	1
178	BMET-04LEPTOMENINGEAL CARCINOMATOSIS IN MELANOMA. Neuro-Oncology, 2015, 17, v45.4-v45.	0.6	0
179	CMET-16. THE ROLE OF SURGICAL RESECTION OF MELANOMA BRAIN METASTASES IN THE IMMUNOTHERAPY ERA. Neuro-Oncology, 2017, 19, vi42-vi42.	0.6	0
180	GENE-18. DIVERGENT CLONAL EVOLUTION OF MELANOMA BRAIN METASTASES DURING TREATMENT WITH IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi106-vi107.	0.6	0

#	Article	IF	CITATIONS
181	CMET-16. THE ROLE OF SURGICAL RESECTION OF MELANOMA BRAIN METASTASES IN THE IMMUNOTHERAPY ERA. Neuro-Oncology, 2018, 20, vi56-vi57.	0.6	0
182	Personalized medicine in brain metastases: a plea for more translational studies. Personalized Medicine, 2018, 15, 141-143.	0.8	0
183	Highlights of the inaugural ten – the launch of Neuro-Oncology Advances. Neuro-Oncology Advances, 2019, 1, vdz016.	0.4	0
184	RARE-04. TARGETED TREATMENT OF PAPILLARY CRANIOPHARYNGIOMAS HARBORING BRAFV600E MUTATIONS. Neuro-Oncology, 2019, 21, vi222-vi222.	0.6	0
185	NIMG-43. LONGITUDINAL TRACKING AND GROWTH RATE CHARACTERIZATION OF BRAIN METASTASES ON MAGNETIC RESONANCE IMAGING. Neuro-Oncology, 2019, 21, vi170-vi171.	0.6	0
186	TMOD-24. DEVELOPMENT OF A NOVEL IN VIVO MODEL OF LUNG-TO-BRAIN METASTASIS PROGRESSION. Neuro-Oncology, 2019, 21, vi267-vi268.	0.6	0
187	Neurologic complications of melanoma. Cancer, 2020, 126, 477-486.	2.0	0
188	04. ASSESSMENT OF EFFICACY AND SAFETY OF OSIMERTINIB FOR PATIENTS WITH INTRACRANIAL METASTATIC DISEASE: A SYSTEMATIC REVIEW AND META-ANALYSIS. Neuro-Oncology Advances, 2020, 2, ii1-ii1.	0.4	0
189	IMMU-08. PHASE II TRIAL OF PEMBROLIZUMAB AND LENVATINIB FOR LEPTOMENINGEAL METASTASES. Neuro-Oncology Advances, 2021, 3, iv6-iv6.	0.4	0
190	Meningioma research—status quo and quo vadis. Chinese Clinical Oncology, 2017, 6, S1-S1.	0.4	0
191	Clinical characteristics, treatment (Tx) patterns, and overall survival (OS) in advanced (Adv) NSCLC patients (Pts) with and without brain metastases (BM) Journal of Clinical Oncology, 2019, 37, 2035-2035.	0.8	0
192	Genomic Characterization of Brain Metastases: Implications for Precision Medicine. , 2020, , 43-58.		0
193	Role of Precision Medicine in Patients with CNS Metastasis. , 2020, , 69-82.		0
194	Emerging Meningioma Therapies II: Immunotherapies, Novel Radiotherapy Techniques, and Other Experimental Approaches. , 2020, , 227-238.		0
195	PATH-37. DISTINCT GENOMIC SUBCLASSES OF HIGH-GRADE/PROGRESSIVE MENINGIOMAS: NF2-ASSOCIATED, NF2-EXCLUSIVE, AND NF2-AGNOSTIC. Neuro-Oncology, 2021, 23, vi123-vi123.	0.6	0
196	IMMU-02. GENOMIC AND TRANSCRIPTOMIC CORRELATES OF IMMUNOTHERAPY RESPONSE WITHIN THE TUMOR MICROENVIRONMENT OF LEPTOMENINGEAL METASTASES. Neuro-Oncology, 2021, 23, vi92-vi92.	0.6	0
197	CTIM-30. PHASE II TRIAL OF PEMBROLIZUMAB IN RECURRENT AND RESIDUAL HIGH-GRADE MENINGIOMAS. Neuro-Oncology, 2021, 23, vi57-vi57.	0.6	0
198	DDRE-01. CDK PATHWAY INHIBITION WITH ABEMACICLIB IMPROVES INTRACRANIAL AND EXTRACRANIAL RESPONSE TO CHECKPOINT BLOCKADE IN PRE-CLINICAL MODELS OF MELANOMA BRAIN METASTASIS. Neuro-Oncology, 2021, 23, vi74-vi74.	0.6	0

#	Article	IF	CITATIONS
199	QOLP-01. EXPERIENCES FROM PATIENT, CAREGIVER, AND PHYSICIAN SURVEYS ON DIAGNOSIS AND TREATMENT OF BRAIN METASTASES. Neuro-Oncology, 2021, 23, vi182-vi182.	0.6	0
200	BIOM-04. SENSITIVE DETECTION OF LEPTOMENINGEAL DISEASE USING CELL-FREE DNA FROM CEREBROSPINAL FLUID. Neuro-Oncology, 2021, 23, vi10-vi10.	0.6	0
201	CTNI-53. RADIATION TREATMENT VOLUMES BEFORE AND AFTER BRAF/MEK THERAPY IN NEWLY DIAGNOSED PAPILLARY CRANIOPHARYNGIOMAS: A CORRELATIVE ANALYSIS OF THE ALLIANCE A071601 PHASE II TRIAL. Neuro-Oncology, 2021, 23, vi72-vi72.	0.6	0
202	DDRE-03. THERAPEUTIC TARGETING OF THE ERK AND CDK PATHWAYS IN PRECLINICAL MODELS OF BRAIN METASTASES. Neuro-Oncology, 2021, 23, vi74-vi75.	0.6	0
203	CTIM-01. PHASE II TRIAL OF PEMBROLIZUMAB AND LENVATINIB FOR LEPTOMENINGEAL METASTASES. Neuro-Oncology, 2021, 23, vi48-vi49.	0.6	0
204	NIMG-05. ADVANCED IMAGING TO ASSESS LONGITUDINAL VASCULAR CHANGES IN BRAIN METASTASES TREATED WITH CHECKPOINT INHIBITION. Neuro-Oncology, 2020, 22, ii147-ii147.	0.6	0
205	PATH-40. INTRAGENIC DMD DELETIONS ARE THE MOST COMMON RECURRENT GENOMIC ALTERATIONS IN ESTHESIONEUROBLASTOMA. Neuro-Oncology, 2020, 22, ii173-ii173.	0.6	0
206	BIOM-54. A RAPID GENOTYPING PANEL FOR SENSITIVE AND SPECIFIC SEGREGATION OF CNS PATHOLOGIES. Neuro-Oncology, 2020, 22, ii13-ii13.	0.6	0
207	Trabectedin for recurrent WHO grade 2 or 3 meningiomas—paving the road for new opportunities. Neuro-Oncology, 2022, , .	0.6	0
208	Biology and pathophysiology of central nervous system metastases. , 2022, , 55-78.		0
209	Abstract P1-21-06: Phase I study of T-DM1 and metronomic temozolomide in secondary prevention of HER2+ breast cancer brain metastases following local radiation therapy. Cancer Research, 2022, 82, P1-21-06-P1-21-06.	0.4	0
210	CTIM-02. PHASE II STUDY OF IPILIMUMAB AND NIVOLUMAB IN LEPTOMENINGEAL CARCINOMATOSIS. Neuro-Oncology, 2021, 23, vi49-vi49.	0.6	0
211	PATH-40. SPORADIC NF2 WILD-TYPE MULTIPLE MENINGIOMAS HARBOR DISTINCT DRIVER MUTATIONS. Neuro-Oncology, 2021, 23, vi124-vi124.	0.6	0
212	Abstract 4181: CDK4/6 inhibition with Abemaciclib improves intracranial and extracranial response to checkpoint blockade in pre-clinical models of brain metastasis. Cancer Research, 2022, 82, 4181-4181.	0.4	0
213	Abstract 1841: MRTX849 inhibits P-gp and demonstrates CNS exposure in mouse models and cancer patients and demonstrates antitumor activity in intracranial mouse models of lung cancer brain metastasis. Cancer Research, 2022, 82, 1841-1841	0.4	0