Peggy J Farnham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	13.7	5,653
2	ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.	2.4	1,708
3	The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnology, 2010, 28, 1045-1048.	9.4	1,705
4	Architecture of the human regulatory network derived from ENCODE data. Nature, 2012, 489, 91-100.	13.7	1,384
5	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	13.7	1,252
6	Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nature Biotechnology, 2010, 28, 1097-1105.	9.4	647
7	Insights from genomic profiling of transcription factors. Nature Reviews Genetics, 2009, 10, 605-616.	7.7	473
8	The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.	7.1	371
9	Discovering Hematopoietic Mechanisms through Genome-wide Analysis of GATA Factor Chromatin Occupancy. Molecular Cell, 2009, 36, 667-681.	4.5	314
10	Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics and Chromatin, 2015, 8, 57.	1.8	277
11	Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 2018, 362, .	6.0	220
12	DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics, 2013, 45, 836-841.	9.4	207
13	A comprehensive ChIP–chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Research, 2007, 17, 1550-1561.	2.4	190
14	Inferring regulatory element landscapes and transcription factor networks from cancer methylomes. Genome Biology, 2015, 16, 105.	13.9	178
15	Cross-talk between Site-specific Transcription Factors and DNA Methylation States. Journal of Biological Chemistry, 2013, 288, 34287-34294.	1.6	172
16	Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci. PLoS Genetics, 2014, 10, e1004102.	1.5	167
17	Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Research, 2013, 23, 1522-1540.	2.4	162
18	dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Research, 2017, 45, 9901-9916.	6.5	160

Peggy J Farnham

#	Article	IF	CITATIONS
19	Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biology, 2014, 15, 469.	3.8	139
20	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
21	Using ChIP-Seq Technology to Generate High-Resolution Profiles of Histone Modifications. Methods in Molecular Biology, 2011, 791, 265-286.	0.4	119
22	Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biology, 2012, 13, R52.	13.9	109
23	Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics and Chromatin, 2019, 12, 26.	1.8	101
24	Functional annotation of colon cancer risk SNPs. Nature Communications, 2014, 5, 5114.	5.8	98
25	Intermediate DNA methylation is a conserved signature of genome regulation. Nature Communications, 2015, 6, 6363.	5.8	91
26	The role of DNA methylation in directing the functional organization of the cancer epigenome. Genome Research, 2015, 25, 467-477.	2.4	90
27	A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nature Communications, 2019, 10, 4154.	5.8	87
28	Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 550-573.	2.3	80
29	The role of E2F in the mammalian cell cycle. Biochimica Et Biophysica Acta: Reviews on Cancer, 1993, 1155, 125-131.	3.3	74
30	A Prostate Cancer Risk Element Functions as a Repressive Loop that Regulates HOXA13. Cell Reports, 2017, 21, 1411-1417.	2.9	68
31	ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenetics and Chromatin, 2013, 6, 13.	1.8	61
32	CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops. Genome Biology, 2018, 19, 160.	3.8	60
33	Using ChIP-seq Technology to Identify Targets of Zinc Finger Transcription Factors. Methods in Molecular Biology, 2010, 649, 437-455.	0.4	57
34	Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Research, 2014, 42, 10856-10868.	6.5	56
35	Epigenetic and transcriptional determinants of the human breast. Nature Communications, 2015, 6, 6351.	5.8	56
36	ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream from transcription start sites at the majority of CpG island promoters. Genome Research, 2018, 28, 310-320.	2.4	56

Peggy J Farnham

#	Article	IF	CITATIONS
37	Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics and Chromatin, 2016, 9, 50.	1.8	53
38	Genome-wide Analysis of Transcription Factor E2F1 Mutant Proteins Reveals That N- and C-terminal Protein Interaction Domains Do Not Participate in Targeting E2F1 to the Human Genome. Journal of Biological Chemistry, 2011, 286, 11985-11996.	1.6	45
39	Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation. Science Advances, 2018, 4, eaav8550.	4.7	43
40	The Enigmatic HOX Genes: Can We Crack Their Code?. Cancers, 2019, 11, 323.	1.7	40
41	The prostate cancer risk variant rs55958994 regulates multiple gene expression through extreme long-range chromatin interaction to control tumor progression. Science Advances, 2019, 5, eaaw6710.	4.7	35
42	Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Research, 2016, 44, 4123-4133.	6.5	32
43	4C-seq revealed long-range interactions of a functional enhancer at the 8q24 prostate cancer risk locus. Scientific Reports, 2016, 6, 22462.	1.6	30
44	Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nature Communications, 2014, 5, 5442.	5.8	25
45	TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinoma. PLoS Genetics, 2020, 16, e1009023.	1.5	20
46	Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters. Nucleic Acids Research, 2020, 48, 5986-6000.	6.5	20
47	Thematic Minireview Series on Results from the ENCODE Project: Integrative Global Analyses of Regulatory Regions in the Human Genome. Journal of Biological Chemistry, 2012, 287, 30885-30887.	1.6	12
48	Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). Methods in Molecular Biology, 2018, 1766, 209-229.	0.4	12
49	Threeâ€dimensional analysis reveals altered chromatin interaction by enhancer inhibitors harbors TCF7L2â€regulated cancer gene signature. Journal of Cellular Biochemistry, 2019, 120, 3056-3070.	1.2	9
50	Genome-wide analysis of HOXC4 and HOXC6 regulated genes and binding sites in prostate cancer cells. PLoS ONE, 2020, 15, e0228590.	1.1	8
51	Uncovering Transcription Factor Modules Using One- and Three-dimensional Analyses. Journal of Biological Chemistry, 2012, 287, 30914-30921.	1.6	7
52	FOXC1 Binds Enhancers and Promotes Cisplatin Resistance in Bladder Cancer. Cancers, 2022, 14, 1717.	1.7	5
53	The Human Epigenome Browser at Washington University. , 0, .		1
54	Using genomic technologies to investigate transcriptional regulation in normal and cancer cells. FASEB Journal, 2012, 26, 460.1.	0.2	0