Ian Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321291/publications.pdf

Version: 2024-02-01

		186209	189801
53	4,073 citations	28	50
papers	citations	h-index	g-index
53	53	53	4566
<i>))</i>	33	J.J.	7300
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Toxin or medication? Immunotherapeutic effects of nicotine on a specialist caterpillar. Functional Ecology, 2021, 35, 614-626.	1.7	15
2	Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants, 2021, 7, 256-267.	4.7	137
3	Foliar Aphid Herbivory Alters the Tomato Rhizosphere Microbiome, but Initial Soil Community Determines the Legacy Effects. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	13
4	Synergism between local―and landscapeâ€level pesticides reduces wild bee floral visitation in pollinatorâ€dependent crops. Journal of Applied Ecology, 2021, 58, 1187-1198.	1.9	20
5	Supplemental forage ameliorates the negative impact of insecticides on bumblebees in a pollinator-dependent crop. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210785.	1.2	12
6	Development of Chitosan Films from Edible Crickets and Their Performance as a Bio-Based Food Packaging Material. Polysaccharides, 2021, 2, 744-758.	2.1	8
7	IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
8	Conditioning the soil microbiome through plant–soil feedbacks suppresses an aboveground insect pest. New Phytologist, 2020, 226, 595-608.	3.5	67
9	Do pollinators prefer pesticideâ€free plants? An experimental test with monarchs and milkweeds. Journal of Applied Ecology, 2020, 57, 2019-2030.	1.9	10
10	Tritrophic interactions reinforce a negative preference–performance relationship in the tobacco hornworm (<i>Manduca sexta</i>). Ecological Entomology, 2020, 45, 783-794.	1.1	19
11	Phylogenetic farming: Can evolutionary history predict crop rotation via the soil microbiome?. Evolutionary Applications, 2020, 13, 1984-1999.	1.5	17
12	Quantifying Pesticide Exposure Risk for Monarch Caterpillars on Milkweeds Bordering Agricultural Land. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	31
13	A Promiscuous CYP706A3 Reduces Terpene Volatile Emission from Arabidopsis Flowers, Affecting Florivores and the Floral Microbiome. Plant Cell, 2019, 31, 2947-2972.	3.1	33
14	Domesticated tomatoes are more vulnerable to negative plant–soil feedbacks than their wild relatives. Journal of Ecology, 2019, 107, 1753-1766.	1.9	30
15	Distantly related crops are not better rotation partners for tomato. Journal of Applied Ecology, 2018, 55, 2506-2516.	1.9	17
16	Domestication of tomato has reduced the attraction of herbivore natural enemies to pestâ€damaged plants. Agricultural and Forest Entomology, 2018, 20, 390-401.	0.7	42
17	Wild Bee Pollen Diets Reveal Patterns of Seasonal Foraging Resources for Honey Bees. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	49
18	Application and Theory of Plant–Soil Feedbacks on Aboveground Herbivores. Ecological Studies, 2018, , 319-343.	0.4	18

#	Article	IF	CITATIONS
19	Constitutive exposure to the volatile methyl salicylate reduces perâ€capita foraging efficiency of a generalist predator to learned prey associations. Entomologia Experimentalis Et Applicata, 2018, 166, 661-672.	0.7	4
20	Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 Regulates Responses to Systemin, Necrotrophic Fungi, and Insect Herbivory. Plant Cell, 2018, 30, 2214-2229.	3.1	43
21	A cry for help or sexual perfumes? An alternative hypothesis for wasp attraction to the scent of caterpillarâ∈wounded plants. Plant, Cell and Environment, 2017, 40, 327-329.	2.8	5
22	Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense. Journal of Chemical Ecology, 2017, 43, 573-585.	0.9	26
23	Steering Soil Microbiomes to Suppress Aboveground Insect Pests. Trends in Plant Science, 2017, 22, 770-778.	4.3	193
24	Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agriculture, Ecosystems and Environment, 2016, 231, 264-270.	2.5	62
25	Ecoâ∈evolutionary factors drive induced plant volatiles: a metaâ∈analysis. New Phytologist, 2016, 210, 284-294.	3.5	107
26	Indirect plant–parasitoid interactions mediated by changes in herbivore physiology. Current Opinion in Insect Science, 2016, 14, 112-119.	2.2	53
27	Jasmonate-induced plant defenses and prey availability impact the preference and performance of an omnivorous stink bug, Podisus maculiventris. Arthropod-Plant Interactions, 2015, 9, 141-148.	0.5	8
28	What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. Pest Management Science, 2015, 71, 139-150.	1.7	18
29	Plant Defenses and Predation Risk Differentially Shape Patterns of Consumption, Growth, and Digestive Efficiency in a Guild of Leaf-Chewing Insects. PLoS ONE, 2014, 9, e93714.	1.1	40
30	Are exotic herbivores better competitors? A metaâ€analysis. Ecology, 2014, 95, 30-36.	1.5	13
31	Editorial overview: Ecology: Beyond a taxonomically driven approach for describing pattern and process in complex insect communities. Current Opinion in Insect Science, 2014, 2, v-vii.	2.2	O
32	Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation. Biological Control, 2014, 71, 70-77.	1.4	43
33	Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia, 2013, 173, 1379-1386.	0.9	55
34	Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 2013, 198, 16-32.	3.5	1,109
35	Trophic Complexity and the Adaptive Value of Damage-Induced Plant Volatiles. PLoS Biology, 2012, 10, e1001437.	2.6	46
36	Employing Immunomarkers to Track Dispersal and Trophic Relationships of a Piercing-Sucking Predator, <l>Podisus maculiventris</l> (Hemiptera: Pentatomidae). Environmental Entomology, 2012, 41, 1527-1533.	0.7	12

#	Article	IF	Citations
37	Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomologia Experimentalis Et Applicata, 2012, 145, 115-123.	0.7	41
38	Testing for Phytochemical Synergism: Arthropod Community Responses to Induced Plant Volatile Blends Across Crops. Journal of Chemical Ecology, 2012, 38, 1264-1275.	0.9	34
39	Phytohormone-mediated plant resistance and predation risk act independently on the population growth and wing formation of potato aphids, Macrosiphum euphorbiae. Arthropod-Plant Interactions, 2012, 6, 181-186.	0.5	13
40	Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire?. Biological Control, 2012, 60, 77-89.	1.4	187
41	Do plant defenses enhance or diminish prey suppression by omnivorous Heteroptera?. Biological Control, 2011, 59, 53-60.	1.4	17
42	Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biological Control, 2011, 59, 294-303.	1.4	126
43	Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis. Oecologia, 2011, 166, 627-636.	0.9	51
44	Plant resistance attenuates the consumptive and non-consumptive impacts of predators on prey. Oikos, 2010, 119, 1105-1113.	1.2	69
45	Field evidence for indirect interactions between foliarâ€feeding insect and rootâ€feeding nematode communities on <i>Nicotiana tabacum</i> . Ecological Entomology, 2009, 34, 262-270.	1.1	58
46	Effects of Plant Vascular Architecture on Aboveground–Belowground-Induced Responses to Foliar and Root Herbivores on Nicotiana tabacum. Journal of Chemical Ecology, 2008, 34, 1349-1359.	0.9	19
47	Physiological integration of roots and shoots in plant defense strategies links above―and belowground herbivory. Ecology Letters, 2008, 11, 841-851.	3.0	168
48	CONSTITUTIVE AND INDUCED DEFENSES TO HERBIVORY IN ABOVE- AND BELOWGROUND PLANT TISSUES. Ecology, 2008, 89, 392-406.	1.5	238
49	Plant-mediated interactions in herbivorous insects: mechanisms, symmetry, and challenging the paradigms of competition past., 2007,, 19-50.		68
50	Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecology Letters, 2007, 10, 977-994.	3.0	493
51	Leafhopper-induced plant resistance enhances predation risk in a phytophagous beetle. Oecologia, 2007, 152, 665-675.	0.9	43
52	Plant trichomes indirectly enhance tritrophic interactions involving a generalist predator, the red imported fire ant. Biological Control, 2006, 36, 375-384.	1.4	39
53	The threat of parasitism impairs immune function in host caterpillars. Ecological Research, 0, , .	0.7	0