
Maria Isabel SÃ;nchez de Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Comparison of Binary Mix of Agro-Industrial Pozzolanic Additions for Elaborating Ternary Cements: Kinetic Parameters. Materials, 2021, 14, 2944.	2.9	4
2	Durability of Ternary Cements Based on New Supplementary Cementitious Materials from Industrial Waste. Applied Sciences (Switzerland), 2021, 11, 5977.	2.5	1
3	Exploring sulphate resistance of coal mining waste blended cements through experiments and thermodynamic modelling. Cement and Concrete Composites, 2021, 121, 104086.	10.7	11
4	Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA). Sustainability, 2021, 13, 414.	3.2	19
5	Recycled Precast Concrete Kerbs and Paving Blocks, a Technically Viable Option for Footways. Materials, 2021, 14, 7007.	2.9	4
6	Sulfate Resistance in Cements Bearing Ornamental Granite Industry Sludge. Materials, 2020, 13, 4081.	2.9	6
7	Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants. Applied Sciences (Switzerland), 2020, 10, 8982.	2.5	2
8	Fired clay-based construction and demolition waste as pozzolanic addition in cements. Design of new eco-efficient cements. Journal of Cleaner Production, 2020, 265, 121610.	9.3	34
9	Durability and chromatic behavior in cement pastes containing ceramic industry milling and glazing byâ€products. Journal of the American Ceramic Society, 2019, 102, 1971-1981.	3.8	9
10	Effect of Granite Waste on Binary Cement Hydration and Paste Performance: Statistical Analysis. ACI Materials Journal, 2019, 116, .	0.2	3
11	Use of ceramic industry milling and glazing waste as an active addition in cement. Journal of the American Ceramic Society, 2018, 101, 2028-2037.	3.8	23
12	Use of clay-based construction and demolition waste as additions in the design of new low and very low heat of hydration cements. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	13
13	Aprovechamiento de un residuo del carbón para reducción del impacto ambiental de la minerÃa del carbón en Colombia: estudio del potencial de uso en la industria del cemento. Revista CINTEX, 2018, 23, 95-102.	0.2	4
14	Characterisation and valorisation of biomass waste as a possible addition in eco-cement design. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	27
15	Sulfate Resistance in OPC and SRPC Containing Calcined Paper Sludge Waste: Ettringite or Thaumasite Formation. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	5
16	Characterization of Ceramicâ€Based Construction and Demolition Waste: Use as Pozzolan in Cements. Journal of the American Ceramic Society, 2016, 99, 4121-4127.	3.8	52
17	Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 2016, 127, 950-958.	7.2	37
18	New additions for eco-efficient cement design. Impact on calorimetric behaviour and comparison of test methods. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4595-4607.	3.1	22

#	Article	IF	CITATIONS
19	Mineralogy and Microstructure of Hydrated Phases During the Pozzolanic Reaction in the Sanitary Ware Waste/Ca(<scp>OH</scp>) ₂ System. Journal of the American Ceramic Society, 2016, 99, 340-348.	3.8	29
20	Effect of the constituents (asphalt, clay materials, floating particles and fines) of construction and demolition waste on the properties of recycled concretes. Construction and Building Materials, 2015, 79, 22-33.	7.2	84
21	Assessment of Construction and Demolition Waste plant management in Spain: in pursuit of sustainability and eco-efficiency. Journal of Cleaner Production, 2015, 90, 16-24.	9.3	85
22	Paper sludge, an environmentally sound alternative source of MK-based cementitious materials. A review. Construction and Building Materials, 2015, 74, 37-48.	7.2	96
23	Durability of Blended Cement Pastes Containing Ceramic Waste as a Pozzolanic Addition. Journal of the American Ceramic Society, 2014, 97, 1543-1551.	3.8	33
24	INFLUENCE OF INTERFACIAL TRANSITION ZONE ON ENGINEERING PROPERTIES OF THE CONCRETE MANUFACTURED WITH RECYCLED CERAMIC AGGREGATE. Journal of Civil Engineering and Management, 2014, 21, 83-93.	3.5	32
25	Scientific and technical aspects of blended cement matrices containing activated slate wastes. Cement and Concrete Composites, 2014, 48, 19-25.	10.7	22
26	Influence of mixed recycled aggregate on the physical – mechanical properties of recycled concrete. Journal of Cleaner Production, 2014, 68, 216-225.	9.3	233
27	Leaching in concretes containing recycled ceramic aggregate from the sanitary ware industry. Journal of Cleaner Production, 2014, 66, 85-91.	9.3	30
28	Mineralogical Evolution of Kaolinâ€Based Drinking Water Treatment Waste for Use as Pozzolanic Material. The Effect of Activation Temperature. Journal of the American Ceramic Society, 2013, 96, 3188-3195.	3.8	23
29	Properties of recycled ceramic aggregate concretes: Water resistance. Cement and Concrete Composites, 2013, 40, 21-29.	10.7	73
30	The Influence of Slate Waste Activation Conditions on Mineralogical Changes and Pozzolanic Behavior. Journal of the American Ceramic Society, 2013, 96, 2276-2282.	3.8	22
31	Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Construction and Building Materials, 2013, 40, 822-831.	7.2	91
32	Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel, 2013, 107, 138-146.	6.4	35
33	Freeze-thaw durability of recycled concrete containing ceramic aggregate. Journal of Cleaner Production, 2013, 40, 151-160.	9.3	137
34	The influence of thermal activation of art paper sludge on the technical properties of blended Portland cements. Cement and Concrete Composites, 2013, 37, 136-142.	10.7	28
35	Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cement and Concrete Composites, 2012, 34, 1019-1023.	10.7	97
36	Recycling petroleum coke in blended cement mortar to produce lightweight material for Impact Noise Reduction. Cement and Concrete Composites, 2012, 34, 1194-1201.	10.7	12

#	Article	IF	CITATIONS
37	Gas permeability in concrete containing recycled ceramic sanitary ware aggregate. Construction and Building Materials, 2012, 37, 597-605.	7.2	59
38	Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and Concrete Composites, 2012, 34, 48-54.	10.7	177
39	Effect of activated coal mining wastes on the properties of blended cement. Cement and Concrete Composites, 2012, 34, 678-683.	10.7	117
40	Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 2012, 31, 112-118.	7.2	171
41	Aspectos constructivos del aplacado de piedra artificial (arcosita "Butsemsâ€) de la fachada sur del Palacio del Senado de España. Materiales De Construccion, 2012, 62, 309-318.	0.7	2
42	Los materiales utilizados en la ejecución de la bóveda encamonada del Salón de Plenos del Senado de España. Materiales De Construccion, 2012, 62, 299-307.	0.7	2
43	Using Ceramic Materials in Ecoefficient Concrete and Precast Concrete Products. , 2011, , .		8
44	Development of blended cement mortars with acoustic properties using petroleum coke. Construction and Building Materials, 2011, 25, 1086-1092.	7.2	16
45	Influence of freezing test methods, composition and microstructure on frost durability assessment of clay roofing tiles. Construction and Building Materials, 2011, 25, 2888-2897.	7.2	21
46	Caracterización de los hormigones realizados con áridos reciclados procedentes de la industria de cerámica sanitaria. Materiales De Construccion, 2011, 61, 533-546.	0.7	26
47	The White Cement Behaviour with Different Materials Addition Submitted to UltraViolet Light Exposure. Materials Science Forum, 2010, 636-637, 1228-1233.	0.3	0
48	New Construction Materials: Calcined Paper Sludges as Active Additions. Materials Science Forum, 2010, 636-637, 1222-1227.	0.3	4
49	Decay of pavement mortar due to thaumasite formation. Journal of Chemical Technology and Biotechnology, 2009, 84, 320-325.	3.2	8
50	Novel Use of Kaolin Wastes in Blended Cements. Journal of the American Ceramic Society, 2009, 92, 2443-2446.	3.8	29
51	Influence of Activated Art Paper Sludge‣ime Ratio on Hydration Kinetics and Mechanical Behavior in Mixtures Cured at 20°C. Journal of the American Ceramic Society, 2009, 92, 3014-3021.	3.8	17
52	Effect of activation conditions of a kaolinite based waste on rheology of blended cement pastes. Cement and Concrete Research, 2009, 39, 843-848.	11.0	27
53	Efecto de la adición de lodos de papel activados térmicamente en las propiedades mecánicas y de porosidad de pastas de cemento. Materiales De Construccion, 2009, 59, 41-52.	0.7	3
54	Use of recycled copper slag for blended cements. Journal of Chemical Technology and Biotechnology, 2008, 83, 209-217.	3.2	55

#	Article	IF	CITATIONS
55	The pozzolanic properties of paper sludge waste. Construction and Building Materials, 2008, 22, 1484-1490.	7.2	125
56	Characterisation of calcined paper sludge as an environmentally friendly source of metakaolin for manufacture of cementitious materials. Advances in Cement Research, 2008, 20, 23-30.	1.6	74
57	Influencia de la activación de un residuo arcilloso de la industria papelera en el comportamiento de matrices de cemento. Materiales De Construccion, 2008, 58, .	0.7	3
58	Mineralogical and morphological changes of calcined paper sludge at different temperatures and retention in furnace. Applied Clay Science, 2007, 36, 279-286.	5.2	94
59	Properties and Performances of Concrete Tiles Containing Waste Fired Clay Materials. Journal of the American Ceramic Society, 2007, 90, 3559-3565.	3.8	35
60	Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. Journal of Thermal Analysis and Calorimetry, 2007, 90, 443-447.	3.6	70
61	An evaluation of different kinetic models for determining the kinetic coefficients in sugar cane straw–clay ash/lime system. Advances in Cement Research, 2006, 18, 17-26.	1.6	32
62	Morphology and Properties in Blended Cements with Ceramic Wastes as a Pozzolanic Material. Journal of the American Ceramic Society, 2006, 89, 3701-3705.	3.8	80
63	Recycling of silicomanganese slag as pozzolanic material in Portland cements: Basic and engineering properties. Cement and Concrete Research, 2006, 36, 487-491.	11.0	65
64	Influence of metastable hydrated phases on the pore size distribution and degree of hydration of MK-blended cements cured at 60 ŰC. Cement and Concrete Research, 2005, 35, 1292-1298.	11.0	31
65	The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: Application of a kinetic–diffusive model. Cement and Concrete Research, 2005, 35, 2137-2142.	11.0	60
66	Propiedades de la escoria de SiMn como material puzolanico en la fabricación de cementos portland. Materiales De Construccion, 2005, 55, 53-62.	0.7	11
67	Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds. Cement and Concrete Research, 2004, 34, 1881-1888.	11.0	107
68	The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 A°C. Cement and Concrete Research, 2003, 33, 643-649.	11.0	92
69	Total and soluble chromium, nickel and cobalt content in the main materials used in the manufacturing of Spanish commercial cements. Cement and Concrete Research, 2002, 32, 435-440.	11.0	30
70	Investigación sobre la actividad puzolánica de materiales de desecho procedentes de arcilla cocida. Materiales De Construccion, 2001, 51, 45-52.	0.7	22
71	Viabilidad de utilización de materiales de desecho procedentes de productos cerámicos en prefabricados de hormigón. Materiales De Construccion, 2001, 51, 149-161.	0.7	9
72	The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cement and Concrete Research, 2000, 30, 209-216.	11.0	225

#	Article	IF	CITATIONS
73	Influencia del metacaolÃn en la estructura porosa de matrices a base de mc/cemento. Materiales De Construccion, 2000, 50, 57-67.	0.7	10
74	Influence of the microsilica state on pozzolanic reaction rate. Cement and Concrete Research, 1999, 29, 945-949.	11.0	54
75	Granulometric analysis of fly ashes by laser diffraction. Advances in Cement Research, 1990, 3, 47-54.	1.6	4