
Alexander V Fonin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Evidence of the Importance of Weak Interactions in the Formation of PML-Bodies. International Journal of Molecular Sciences, 2022, 23, 1613.	1.8	9
2	Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cellular and Molecular Life Sciences, 2022, 79, 251.	2.4	42
3	Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird's-Eye View. International Journal of Molecular Sciences, 2022, 23, 5010.	1.8	7
4	PML-Bodies as Open Dynamic System. Biophysical Journal, 2021, 120, 311a.	0.2	0
5	Phytochrome Photobodies in Mammalian Cells. Biophysical Journal, 2021, 120, 307a.	0.2	0
6	On the Role of Normal Aging Processes in the Onset and Pathogenesis of Diseases Associated with the Abnormal Accumulation of Protein Aggregates. Biochemistry (Moscow), 2021, 86, 275-289.	0.7	6
7	Photo-dependent membrane-less organelles formed from plant phyB and PIF6 proteins in mammalian cells. International Journal of Biological Macromolecules, 2021, 176, 325-331.	3.6	7
8	The Role of Non-Specific Interactions in Canonical and ALT-Associated PML-Bodies Formation and Dynamics. International Journal of Molecular Sciences, 2021, 22, 5821.	1.8	17
9	Biocompatibility and bioactivity study of a cytostatic drug belonging to the group of alkylating agents of the triazine derivative class. Journal of Molecular Liquids, 2021, 343, 117630.	2.3	12
10	Photophysical Properties of BADAN Revealed in the Study of GGBP Structural Transitions. International Journal of Molecular Sciences, 2021, 22, 11113.	1.8	3
11	Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochemical and Photobiological Sciences, 2021, 20, 1645-1656.	1.6	6
12	Folding perspectives of an intrinsically disordered transactivation domain and its single mutation breaking the folding propensity. International Journal of Biological Macromolecules, 2020, 155, 1359-1372.	3.6	7
13	Changes in the Functional Activity of Horseradish Peroxidase and Bovine Serum Albumin in Media with Different Isotope 2H/1H Compositions. Biophysics (Russian Federation), 2020, 65, 195-201.	0.2	1
14	Interaction of Benzothiazole Dye Thioflavin T with Acidic Protein Prothymosin Alpha. Biophysical Journal, 2020, 118, 372a-373a.	0.2	0
15	The Role of Polyampholyte Regions of Intrinsically Disordered Proteins in the Formation of Membraneless Organelles. Biophysical Journal, 2020, 118, 369a.	0.2	0
16	Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder-based proteoforms. Cellular and Molecular Life Sciences, 2019, 76, 4461-4492.	2.4	47
17	The Role of Charge Interactions in Liquid-Liquid Phase Transitions. Biophysical Journal, 2019, 116, 195a.	0.2	0
18	Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends in Biochemical Sciences, 2019, 44, 716-728.	3.7	94

Alexander V Fonin

#	Article	IF	CITATIONS
19	Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore. International Journal of Molecular Sciences, 2019, 20, 6067.	1.8	8
20	Synthesis, biological evaluation and molecular docking studies on the DNA and BSA binding interactions of palladium(II) and platinum(II) complexes featuring amides of tetrazol-1-yl- and tetrazol-5-ylacetic acids. Polyhedron, 2019, 158, 36-46.	1.0	12
21	Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. International Journal of Biological Macromolecules, 2019, 125, 244-255.	3.6	11
22	Intrinsically Disordered Proteins PH-Induced Structural Transitions in Overcrowded Milieu. Biophysical Journal, 2018, 114, 591a.	0.2	1
23	Synthesis, Structure, and Antiproliferative Activity of trans-Palladium(II) Complexes with Tetrazol-2-ylacetic Acid Derivatives. Russian Journal of General Chemistry, 2018, 88, 2354-2358.	0.3	6
24	Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cellular and Molecular Life Sciences, 2018, 75, 3907-3929.	2.4	71
25	Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. International Journal of Molecular Sciences, 2017, 18, 2008.	1.8	2
26	Structure and Conformational Properties of d-Glucose/d-Galactose-Binding Protein in Crowded Milieu. Molecules, 2017, 22, 244.	1.7	11
27	High Molecular Mass Crowders Change the Folding Pathway of D-Glucose/D-Galactose-Binding Protein. Biophysical Journal, 2016, 110, 213a.	0.2	0
28	Protein folding and stability in the presence of osmolytes. Biophysics (Russian Federation), 2016, 61, 185-192.	0.2	10
29	Spectral properties of BADAN in solutions with different polarities. Journal of Molecular Structure, 2015, 1090, 107-111.	1.8	4
30	Tryptophan Residue of the D-Galactose/D-Glucose-Binding Protein from E. Coli Localized in its Active Center Does not Contribute to the Change in Intrinsic Fluorescence Upon Glucose Binding. Journal of Fluorescence, 2015, 25, 87-94.	1.3	6
31	Fluorescence of Dyes in Solutions with High Absorbance. Inner Filter Effect Correction. PLoS ONE, 2014, 9, e103878.	1.1	182
32	The trehalose/maltose-binding protein as the sensitive element of a glucose biosensor. Optical Materials, 2014, 36, 1676-1679.	1.7	9
33	Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ, 2014, 2, e275.	0.9	16
34	New Solution of Eliminating the Inner Filter Effect in Fluorescent Measurements. Biophysical Journal, 2013, 104, 345a.	0.2	0
35	Protein-Ligand Interactions of the D-Galactose/D-Glucose-Binding Protein as a Potential Sensing Probe of Glucose Biosensors. Spectroscopy, 2012, 27, 373-379.	0.8	2
36	New Insight in Protein–Ligand Interactions. 2. Stability and Properties of Two Mutant Forms of the <scp>d</scp> -Galactose/ <scp>d</scp> -Glucose-Binding Protein from <i>E. coli</i> . Journal of Physical Chemistry B, 2011, 115, 9022-9032.	1.2	13

Alexander V Fonin

#	Article	IF	CITATIONS
37	New Insight into Proteinâ^'Ligand Interactions. The Case of thed-Galactose/d-Glucose-Binding Protein fromEscherichia coli. Journal of Physical Chemistry B, 2011, 115, 2765-2773.	1.2	13
38	Interaction between non-histone chromatin protein HMGB1 and linker histone H1. Cell and Tissue Biology, 2011, 5, 120-122.	0.2	0
39	Structure and stability of D-galactose/D-glucose-binding protein. The role of D-glucose binding and Ca ion depletion. Spectroscopy, 2010, 24, 355-359.	0.8	4
40	Interaction between linker histone H1 and non-histone chromatin protein HMGB1. Spectroscopy, 2010, 24, 165-168.	0.8	3
41	Ligand-Binding Proteins: Structure, Stability and Practical Application. , 0, , .		3