## Timothy J Mays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321150/publications.pdf Version: 2024-02-01



ΤΙΜΟΤΗΥΙΜΑΥς

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at<br>Supercritical Temperatures. ACS Nano, 2015, 9, 8249-8254.                                                    | 14.6 | 57        |
| 2  | Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. Journal of Materials Science, 2017, 52, 3862-3875.                                               | 3.7  | 51        |
| 3  | Hydrogen storage in polymer-based processable microporous composites. Journal of Materials<br>Chemistry A, 2017, 5, 18752-18761.                                                                            | 10.3 | 43        |
| 4  | Structure–property relationships in metal-organic frameworks for hydrogen storage. Colloids and<br>Surfaces A: Physicochemical and Engineering Aspects, 2016, 496, 77-85.                                   | 4.7  | 31        |
| 5  | Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores. Adsorption, 2013, 19, 643-652.                                                                         | 3.0  | 29        |
| 6  | Analysis of hydrogen storage in nanoporous materials for low carbon energy applications. Faraday<br>Discussions, 2011, 151, 59.                                                                             | 3.2  | 26        |
| 7  | Analysis of the oxidation reactivity of carbonaceous materials using thermogravimetric analysis.<br>Journal of Thermal Analysis and Calorimetry, 2005, 80, 109-113.                                         | 3.6  | 25        |
| 8  | Effect of pore geometry on ultra-densified hydrogen in microporous carbons. Carbon, 2021, 173, 968-979.                                                                                                     | 10.3 | 25        |
| 9  | Nanoporous polymer-based composites for enhanced hydrogen storage. Adsorption, 2019, 25, 889-901.                                                                                                           | 3.0  | 24        |
| 10 | Atomistic Insights into the Effects of Doping and Vacancy Clustering on Li-Ion Conduction in the<br>Li <sub>3</sub> OCl Antiperovskite Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 5094-5100. | 5.1  | 24        |
| 11 | Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures. Adsorption, 2014, 20, 373-384.                                                                                        | 3.0  | 23        |
| 12 | Improving comparability of hydrogen storage capacities ofÂnanoporous materials. International<br>Journal of Hydrogen Energy, 2012, 37, 2728-2736.                                                           | 7.1  | 22        |
| 13 | High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures. Chemical Engineering Journal, 2015, 272, 38-47.                              | 12.7 | 20        |
| 14 | Assessment of the long-term stability of the polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 332-337.                       | 7.1  | 17        |
| 15 | Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 113-119.                                 | 4.7  | 16        |
| 16 | Chemical modification of the polymer of intrinsic microporosity PIM-1 for enhanced hydrogen storage. Adsorption, 2020, 26, 1083-1091.                                                                       | 3.0  | 16        |
| 17 | The use of tg to measure different concentrations of lime in non-hydraulic lime mortars. Journal of Thermal Analysis and Calorimetry, 2006, 85, 377-382.                                                    | 3.6  | 14        |
| 18 | Nonuniform channels in adsorbent monoliths. AICHE Journal, 2011, 57, 1163-1172.                                                                                                                             | 3.6  | 8         |

ΤΙΜΟΤΗΥ J MAYS

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity.<br>ACS Applied Polymer Materials, 2021, 3, 920-928.                                                                                                         | 4.4 | 8         |
| 20 | Enhancement of gas storage and separation properties of microporous polymers by simple chemical modifications. Multifunctional Materials, 2021, 4, 025002.                                                                                                  | 3.7 | 5         |
| 21 | Molecular simulation of hydrogen storage and transport in cellulose. Molecular Simulation, 2021, 47, 170-179.                                                                                                                                               | 2.0 | 3         |
| 22 | Hydrogen Adsorption in Metal–Organic Framework MIL-101(Cr)—Adsorbate Densities and Enthalpies<br>from Sorption, Neutron Scattering, In Situ X-ray Diffraction, Calorimetry, and Molecular Simulations.<br>ACS Applied Energy Materials, 2021, 4, 7839-7847. | 5.1 | 2         |