A C Matin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response to Comments on "EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity― Life Sciences in Space Research, 2021, 29, 85-86.	1.2	1
2	EcAMSat spaceflight measurements of the role of $\ddot{l}f$ s in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sciences in Space Research, 2020, 24, 18-24.	1.2	29
3	Extracellular Vesicle–Mediated <i>In Vitro</i> Transcribed mRNA Delivery for Treatment of HER2+ Breast Cancer Xenografts in Mice by Prodrug CB1954 without General Toxicity. Molecular Cancer Therapeutics, 2020, 19, 858-867.	1.9	33
4	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	13.5	152
5	Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation. Molecular Cancer Therapeutics, 2018, 17, 1133-1142.	1.9	107
6	Phenotyping antibiotic resistance with single-cell resolution for the detection of heteroresistance. Sensors and Actuators B: Chemical, 2018, 270, 396-404.	4.0	41
7	Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its Ïf s -deficient mutant. Life Sciences in Space Research, 2017, 15, 1-10.	1.2	19
8	Utilizing native fluorescence imaging, modeling and simulation to examine pharmacokinetics and therapeutic regimen of a novel anticancer prodrug. BMC Cancer, 2016, 16, 524.	1.1	8
9	Cellular Response of Escherichia coli to Microgravity and Microgravity Analogue Culture. , 2016, , 259-282.		0
10	Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proceedings of the United States of America, 2015, 112, E1433-42.	3.3	378
11	Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Research, 2014, 16, R36.	2.2	63
12	Microgravity Alters the Physiological Characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under Different Nutrient Conditions. Applied and Environmental Microbiology, 2014, 80, 2270-2278.	1.4	33
13	Sigma S-Dependent Antioxidant Defense Protects Stationary-Phase Escherichia coli against the Bactericidal Antibiotic Gentamicin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5964-5975.	1.4	29
14	Stress, Bacterial: General and Specifica ~†. , 2014, , 346-346.		0
15	Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate. PLoS ONE, 2012, 7, e36017.	1.1	60
16	Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing. BMC Cancer, 2010, 10, 146.	1.1	31
17	New Device for High-Throughput Viability Screening of Flow Biofilms. Applied and Environmental Microbiology, 2010, 76, 4136-4142.	1.4	146
18	CNOB/ChrR6, a new prodrug enzyme cancer chemotherapy. Molecular Cancer Therapeutics, 2009, 8, 333-341.	1.9	38

A C MATIN

#	Article	IF	CITATIONS
19	Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria. Clinical Cancer Research, 2009, 15, 5170-5177.	3.2	101
20	Enzyme improvement in the absence of structural knowledge: a novel statistical approach. ISME Journal, 2008, 2, 171-179.	4.4	36
21	Role of the <i>rapA</i> Gene in Controlling Antibiotic Resistance of <i>Escherichia coli</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2007, 51, 3650-3658.	1.4	90
22	Analysis of Novel Soluble Chromate and Uranyl Reductases and Generation of an Improved Enzyme by Directed Evolution. Applied and Environmental Microbiology, 2006, 72, 7074-7082.	1.4	70
23	Effect of Chromate Stress on Escherichia coli K-12. Journal of Bacteriology, 2006, 188, 3371-3381.	1.0	202
24	New enzyme for reductive cancer chemotherapy, YieF, and its improvement by directed evolution. Molecular Cancer Therapeutics, 2006, 5, 97-103.	1.9	49
25	Escherichia coli Biofilms Formed under Low-Shear Modeled Microgravity in a Ground-Based System. Applied and Environmental Microbiology, 2006, 72, 7701-7710.	1.4	115
26	ChrR, a Soluble Quinone Reductase of Pseudomonas putida That Defends against H2O2. Journal of Biological Chemistry, 2005, 280, 22590-22595.	1.6	119
27	EngineeringPseudomonas putidato minimize clogging during biostimulation. , 2005, , .		0
28	Role and Regulation of σs in General Resistance Conferred by Low-Shear Simulated Microgravity in Escherichia coli. Journal of Bacteriology, 2004, 186, 8207-8212.	1.0	74
29	Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology, 2004, 6, 851-860.	1.8	219
30	Chromate-Reducing Properties of Soluble Flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 873-882.	1.4	252
31	A Soluble Flavoprotein Contributes to Chromate Reduction and Tolerance byPseudomonas putida. Acta Biotechnologica, 2003, 23, 233-239.	1.0	46
32	Tetracycline Rapidly Reaches All the Constituent Cells of Uropathogenic Escherichia coli Biofilms. Antimicrobial Agents and Chemotherapy, 2002, 46, 2458-2461.	1.4	81
33	The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Molecular Microbiology, 2000, 36, 414-423.	1.2	115
34	The EmrR Protein Represses the Escherichia coli emrRAB Multidrug Resistance Operon by Directly Binding to Its Promoter Region. Antimicrobial Agents and Chemotherapy, 2000, 44, 2905-2907.	1.4	60
35	Purification to Homogeneity and Characterization of a Novel Pseudomonas putida Chromate Reductase. Applied and Environmental Microbiology, 2000, 66, 1788-1795.	1.4	288
36	pH Homeostasis in Acidophiles. Novartis Foundation Symposium, 1999, 221, 152-166.	1.2	22

A C MATIN

#	Article	IF	CITATIONS
37	The <i>Escherichia coli</i> Starvation Gene <i>cstC</i> Is Involved in Amino Acid Catabolism. Journal of Bacteriology, 1998, 180, 4287-4290.	1.0	28
38	The I_f S level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis. Molecular Microbiology, 1997, 24, 643-651.	1.2	78
39	Role of alternate sigma factors in starvation protein synthesis — novel mechanisms of catabolite repression. Research in Microbiology, 1996, 147, 494-505.	1.0	15
40	Differential regulation of the mcb and emr operons of Escherichia coli: role of mcb in multidrug resistance. Antimicrobial Agents and Chemotherapy, 1996, 40, 1050-1052.	1.4	33
41	Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. Journal of Bacteriology, 1996, 178, 470-476.	1.0	320
42	Capacity of Helicobacter pylori to generate ionic gradients at low pH is similar to that of bacteria which grow under strongly acidic conditions. Infection and Immunity, 1996, 64, 1434-1436.	1.0	37
43	A carbon starvation survival gene of Pseudomonas putida is regulated by sigma 54. Journal of Bacteriology, 1995, 177, 1850-1859.	1.0	51
44	EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. Journal of Bacteriology, 1995, 177, 2328-2334.	1.0	245
45	Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene- and phenol-transforming activity in recombinant Escherichia coli [corrected]. Applied and Environmental Microbiology, 1995, 61, 3323-3328.	1.4	38
46	Starvation Promoters of Escherichia coli: Their Function, Regulation, and Use in Bioprocessing and Bioremediation. Annals of the New York Academy of Sciences, 1994, 721, 277-291.	1.8	30
47	Characterization of the sigma 38-dependent expression of a core Escherichia coli starvation gene, pexB. Journal of Bacteriology, 1994, 176, 3928-3935.	1.0	86
48	The putative sigma factor KatF is regulated posttranscriptionally during carbon starvation. Journal of Bacteriology, 1993, 175, 2143-2149.	1.0	106
49	Genetics of Bacterial Stress Response and Its Applications. Annals of the New York Academy of Sciences, 1992, 665, 1-15.	1.8	18
50	Physiology, molecular biology and applications of the bacterial starvation response. Journal of Applied Bacteriology, 1992, 73, 49S-57S.	1.1	57
51	Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. Journal of Bacteriology, 1991, 173, 1992-1996.	1.0	161
52	The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. Journal of Bacteriology, 1991, 173, 4188-4194.	1.0	361
53	The molecular basis of carbon-starvation-induced general resistance inEscherichia coli. Molecular Microbiology, 1991, 5, 3-10.	1.2	349
54	Molecular analysis of the starvation stress in Escherichia coli. FEMS Microbiology Ecology, 1990, 7, 185-195.	1.3	9

A C MATIN

#	Article	IF	CITATIONS
55	Molecular analysis of the starvation stress in Escherchia coli. FEMS Microbiology Letters, 1990, 74, 185-195.	0.7	3
56	Genetic Basis of Starvation Survival in Nondifferentiating Bacteria. Annual Review of Microbiology, 1989, 43, 293-314.	2.9	342
57	Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. Journal of Bacteriology, 1988, 170, 3910-3914.	1.0	516
58	Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli. Journal of Bacteriology, 1988, 170, 3903-3909.	1.0	123
59	Twoâ€dimensional gel resolution of polypeptides specific for autotrophic growth in <i>Thiobacillus versutus</i> . Journal of Applied Bacteriology, 1987, 63, 469-472.	1.1	1
60	Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. Journal of Bacteriology, 1986, 168, 486-493.	1.0	266
61	Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. Journal of Bacteriology, 1984, 160, 1041-1046.	1.0	200
62	Physiological Basis of the Selective Advantage of a Spirillum sp. in a Carbon-limited Environment. Journal of General Microbiology, 1978, 105, 187-197.	2.3	113
63	Microbial Selection in Continuous Culture. Journal of Applied Bacteriology, 1977, 43, 1-24.	1.1	190
64	Regulation of Glucose Metabolism in Thiobacillus intermedius. Journal of Bacteriology, 1970, 104, 239-246.	1.0	44
65	Keeping a neutral cytoplasm; the bioenergetics of obligate acidophiles. , 0, .		1