Xin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321091/publications.pdf

Version: 2024-02-01

		840585	887953
17	368	11	17
papers	citations	h-index	g-index
17	17	17	346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Organocatalyzed Anionic Ring-Opening Polymerizations of <i>N</i> Sulfonyl Aziridines with Organic Superbases. ACS Macro Letters, 2017, 6, 1331-1336.	2.3	53
2	A base–conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polymer Chemistry, 2014, 5, 6051-6059.	1.9	49
3	Phytic acid: a biogenic organocatalyst for one-pot Biginelli reactions to 3,4-dihydropyrimidin-2(1H)-ones/thiones. RSC Advances, 2014, 4, 19710-19715.	1.7	39
4	Traceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot. Polymer Chemistry, 2016, 7, 6297-6308.	1.9	39
5	Diblock dialternating terpolymers by one-step/one-pot highly selective organocatalytic multimonomer polymerization. Nature Communications, 2021, 12, 7124.	5.8	39
6	lonic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Progress in Polymer Science, 2022, 125, 101484.	11.8	26
7	Amphiphilic star-shaped poly(sarcosine)-block-poly(ε-caprolactone) diblock copolymers: one-pot synthesis, characterization, and solution properties. Journal of Materials Chemistry B, 2017, 5, 679-690.	2.9	24
8	A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether–polyester diblock copolymers. Polymer Chemistry, 2018, 9, 154-159.	1.9	22
9	Organocatalytic Ring-Opening Polymerization of $\langle i \rangle N \langle i \rangle$ -Acylated-1,4-oxazepan-7-ones Toward Well-Defined Poly(ester amide)s: Biodegradable Alternatives to Poly(2-oxazoline)s. ACS Macro Letters, 2020, 9, 464-470.	2.3	18
10	Oneâ€Pot Gloveboxâ€Free Synthesis, Characterization, and Selfâ€Assembly of Novel Amphiphilic Poly(Sarcosineâ€∢i>bà€€aprolactone) Diblock Copolymers. Macromolecular Rapid Communications, 2014, 35, 1954-1959.	2.0	15
11	Poly(amine- <i>co</i> -ester)s by Binary Organocatalytic Ring-Opening Polymerization of <i>N</i> -Boc-1,4-oxazepan-7-one: Synthesis, Characterization, and Self-Assembly. Macromolecules, 2020, 53, 223-232.	2.2	12
12	Boronâ€Catalyzed Polymerization of Dienyltriphenylarsonium Ylides: On the Way to Pure C5 Polymerization. Angewandte Chemie - International Edition, 2021, 60, 8431-8434.	7.2	10
13	Steric Hindrance Drives the Boronâ€Initiated Polymerization of Dienyltriphenylarsonium Ylides to Photoluminescent C5â€Polymers. Angewandte Chemie - International Edition, 2021, 60, 22469-22477.	7.2	9
14	Non-metal with metal behavior: metal-free coordination-insertion ring-opening polymerization. Chemical Science, 2021, 12, 10732-10741.	3.7	5
15	Boronâ€Catalyzed Polymerization of Dienyltriphenylarsonium Ylides: On the Way to Pure C5 Polymerization. Angewandte Chemie, 2021, 133, 8512-8515.	1.6	4
16	Br $ ilde{A}$, nsted base mediated one-pot synthesis of catechol-ended amphiphilic polysarcosine- $\langle i \rangle b < i \rangle$ -poly($\langle i \rangle N < i \rangle$ -butyl glycine) diblock copolypeptoids. Pure and Applied Chemistry, 2019, 91, 363-374.	0.9	2
17	Steric Hindrance Drives the Boronâ€Initiated Polymerization of Dienyltriphenylarsonium Ylides to Photoluminescent C5â€Polymers. Angewandte Chemie, 2021, 133, 22643-22651.	1.6	2