
Greger Thornell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9320993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic variation of design aspects for a significant increase in thermal fracture resistance of alumina microthrusters. Journal of Micromechanics and Microengineering, 2021, 31, 085005.	2.6	1
2	Catalytic effect of platinum and silver in a hydrogen peroxide monopropellant ceramic microthruster. Propulsion and Power Research, 2020, 9, 216-224.	4.3	10
3	Compliance of a microstructured, soft sampling device for transcutaneous blood gas monitoring. RSC Advances, 2020, 10, 36386-36395.	3.6	3
4	Effect of Resistive and Plasma Heating on the Specific Impulse of a Ceramic Cold Gas Thruster. Journal of Microelectromechanical Systems, 2019, 28, 235-244.	2.5	5
5	Pirani microgauge fabricated of high-temperature co-fired ceramics with integrated platinum wires. Sensors and Actuators A: Physical, 2019, 285, 8-16.	4.1	5
6	Ceramic Pressure Sensor for High Temperatures – Investigation of the Effect of Metallization on Read Range. IEEE Sensors Journal, 2017, 17, 2411-2421.	4.7	8
7	Endurance and failure of an alumina-based monopropellant microthruster with integrated heater, catalytic bed and temperature sensors. Journal of Micromechanics and Microengineering, 2017, 27, 055011.	2.6	12
8	Extreme-temperature lab on a chip for optogalvanic spectroscopy of ultra small samples - key components and a first integration attempt. Journal of Physics: Conference Series, 2016, 757, 012029.	0.4	1
9	Manufacturing and characterization of a ceramic single-use microvalve. Journal of Micromechanics and Microengineering, 2016, 26, 095002.	2.6	4
10	Optogalvanic spectroscopy with microplasma sources—current status and development towards a lab on a chip. Journal of Micromechanics and Microengineering, 2016, 26, 104003.	2.6	4
11	The Highland Terrain Hopper (HOPTER): Concept and use cases of a new locomotion system for the exploration of low gravity Solar System bodies. Acta Astronautica, 2016, 121, 200-220.	3.2	16
12	Thermomechanical properties and performance of ceramic resonators for wireless pressure reading at high temperatures. Journal of Micromechanics and Microengineering, 2015, 25, 095016.	2.6	16
13	Evaluation of Dielectric Properties of HTCC Alumina for Realization of Plasma Sources. Journal of Electronic Materials, 2015, 44, 3654-3660.	2.2	12
14	Manufacturing and characterization of a ceramic microcombustor with integrated oxygen storage and release element. Journal of Micromechanics and Microengineering, 2015, 25, 104006.	2.6	11
15	Manufacturing miniature Langmuir probes by fusing platinum bond wires. Journal of Micromechanics and Microengineering, 2015, 25, 105012.	2.6	6
16	Investigation of a zirconia co-fired ceramic calorimetric microsensor for high-temperature flow measurements. Journal of Micromechanics and Microengineering, 2015, 25, 065014.	2.6	4
17	A high-temperature calorimetric flow sensor employing ion conduction in zirconia. Applied Physics Letters, 2015, 106, .	3.3	11
18	Operation Characteristics and Optical Emission Distribution of a Miniaturized Silicon Through-Substrate Split-Ring Resonator Microplasma Source. Journal of Microelectromechanical Systems, 2014, 23, 1340-1345.	2.5	1

GREGER THORNELL

#	Article	IF	CITATIONS
19	Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluidics and Nanofluidics, 2014, 17, 53-71.	2.2	79
20	Stripline split-ring resonator with integrated optogalvanic sample cell. Laser Physics Letters, 2014, 11, 045701.	1.4	13
21	Microplasma source for optogalvanic spectroscopy of nanogram samples. Journal of Applied Physics, 2013, 114, 033302.	2.5	15
22	Evaluation of a microplasma source based on a stripline split-ring resonator. Plasma Sources Science and Technology, 2013, 22, 055017.	3.1	24
23	Finite element analysis of the effect on employing thermal through vias and heat fingers to increase heat transfer to fluid in calorimetric flow sensors. Sensors and Actuators A: Physical, 2013, 201, 49-57.	4.1	3
24	High-temperature zirconia microthruster with an integrated flow sensor. Journal of Micromechanics and Microengineering, 2013, 23, 055004.	2.6	21
25	Towards Chip-Based Salinity Measurements for Small Submersibles and Biologgers. International Journal of Oceanography, 2013, 2013, 1-11.	0.2	8
26	Microfluidics integrable plasma source powered by a silicon through-substrate split-ring resonator. , 2013, , .		1
27	Investigation of exhausts from fabricated silicon micronozzles with rectangular and close to rotationally symmetric cross-sections. Journal of Micromechanics and Microengineering, 2013, 23, 105001.	2.6	2
28	Thermomechanical stability and integrability of an embedded ceramic antenna with an integrated sensor element for wireless reading in harsh environments. Journal of Physics: Conference Series, 2013, 476, 012055.	0.4	3
29	A highly integratable silicon thermal gas flow sensor. Journal of Micromechanics and Microengineering, 2012, 22, 065015.	2.6	20
30	Acoustically enriching, large-depth aquatic sampler. Lab on A Chip, 2012, 12, 1619.	6.0	20
31	A latchable high-pressure thermohydraulic valve actuator. Sensors and Actuators A: Physical, 2012, 188, 292-297.	4.1	17
32	A compact system to extract topography information from scenes viewed by a miniaturized submersible explorer. Sensors and Actuators A: Physical, 2012, 188, 401-410.	4.1	2
33	Instrumentation and vehicle platform of a miniaturized submersible for exploration of terrestrial and extraterrestrial aqueous environments. Acta Astronautica, 2012, 79, 203-211.	3.2	7
34	Enclosure-Induced Interference Effects in a Miniaturized Sidescan Sonar. IEEE Journal of Oceanic Engineering, 2012, 37, 236-243.	3.8	0
35	A latchable high-pressure composite valve actuator combining paraffin and a low melting point alloy. , 2011, , .		3
36	Ga Implantation in a MgO-based Magnetic Tunnel Junction With \$hbox{Co}_{60}hbox{Fe}_{20}hbox{B}_{20}\$ Layers. IEEE Transactions on Magnetics, 2011, 47, 151-155.	2.1	8

GREGER THORNELL

#	Article	IF	CITATIONS
37	A compact projection system enabling topographical measurements for a miniaturized submersible explorer. , 2011, , .		0
38	Seeing the invisible with schlieren imaging. Physics Education, 2011, 46, 294-297.	0.5	4
39	Radiation tolerance of a spin-dependent tunnelling magnetometer for space applications. Measurement Science and Technology, 2011, 22, 045204.	2.6	11
40	A micromachined dual-axis beam steering actuator for use in a miniaturized optical space communication system. Journal of Micromechanics and Microengineering, 2010, 20, 105007.	2.6	2
41	Invited Article: Electric solar wind sail: Toward test missions. Review of Scientific Instruments, 2010, 81, 111301.	1.3	112
42	Experimental Studies of Sealing Mechanism of a Dismountable Microsystem-to-Macropart Fluidic Connector for High Pressure and a Wide Range of Temperature. Advances in Mechanical Engineering, 2010, 2, 712587.	1.6	0
43	Surfaces with high solar reflectance and high thermal emittance on structured silicon for spacecraft thermal control. Optical Materials, 2008, 30, 1410-1421.	3.6	7
44	A Polymeric Paraffin Microactuator. Journal of Microelectromechanical Systems, 2008, 17, 1172-1177.	2.5	22
45	Metallic High-Pressure Microfluidic Pump with Active Valves. , 2007, , .		Ο
46	Binary Mixtures of n-Alkanes for Tunable Thermohydraulic Microactuators. Journal of Microelectromechanical Systems, 2007, 16, 728-733.	2.5	10
47	Thermally regulated valve for minute flows. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 686-691.	2.1	2
48	Analysis of Thermal Transients in an Asymmetric Silicon-Based Heat Dissipation Stage. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 444-456.	1.3	3
49	Design and Modeling of a Thermally Regulated Communications Module for Nanospacecraft. Journal of Spacecraft and Rockets, 2006, 43, 1377-1386.	1.9	6
50	Manufacturing cost and lead time calculation applied to highly miniaturized systems for space. , 2006, , .		0
51	On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes. Sensors and Actuators A: Physical, 2006, 125, 534-547.	4.1	11
52	A polymeric paraffin actuated high-pressure micropump. Sensors and Actuators A: Physical, 2006, 127, 88-93.	4.1	46
53	A solder sealing method for paraffin-filled microcavities. Journal of Micromechanics and Microengineering, 2006, 16, 2369-2374.	2.6	7
54	Structural Integrity of Flat Silicon Panels for Nanosatellites: Modeling and Testing. Journal of Spacecraft and Rockets, 2006, 43, 1319-1327.	1.9	2

GREGER THORNELL

#	Article	IF	CITATIONS
55	Fabrication of a paraffin actuator using hot embossing of polycarbonate. Sensors and Actuators A: Physical, 2003, 103, 307-316.	4.1	61
56	A thermally activated paraffin-based actuator for gas-flow control in a satellite electrical propulsion system. Sensors and Actuators A: Physical, 2003, 105, 237-246.	4.1	22
57	A thermal microactuator made by partial impregnation of polyimide with paraffin. Journal of Micromechanics and Microengineering, 2002, 12, 849-854.	2.6	9
58	A large stroke, high force paraffin phase transition actuator. Sensors and Actuators A: Physical, 2002, 96, 189-195.	4.1	62
59	High Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel. Journal of the Electrochemical Society, 2000, 147, 1810.	2.9	70
60	Desktop microfabrication - initial experiments with a piezoceramic. Journal of Micromechanics and Microengineering, 1999, 9, 434-437.	2.6	15
61	Micromachining by ion track lithography. Sensors and Actuators A: Physical, 1999, 73, 176-183.	4.1	19
62	Microprocessing at the fingertips. Journal of Micromechanics and Microengineering, 1998, 8, 251-262.	2.6	27
63	Anisotropy-independent through micromachining of quartz resonators by ion track etching. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, 829-838.	3.0	21
64	Quartz micromachining by lithographic control of ion track etching. Applied Physics Letters, 1996, 69, 3435-3436.	3.3	18
65	Design and fabrication of a gripping tool for micromanipulation. Sensors and Actuators A: Physical, 1996, 53, 428-433.	4.1	21
66	Heavy ion induced etch anisotropy in single crystalline quartz. , 0, , .		5
67	Cut-independent deep structuring of quartz for frequency control applications. , 0, , .		2
68	Deep micromachining of insulating materials by etching of laterally constrained distributions of ion tracks. , 0, , .		2
69	A polvmeric paraffin micropump with active valves for high-pressure microfluidics. , 0, , .		3