Ya-Wen Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9320716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel‣upported Ni/MnO Particles. Advanced Materials, 2018, 30, 1704609.	11.1	547
2	Atomic Fe Dispersed on Nâ€Doped Carbon Hollow Nanospheres for Highâ€Efficiency Electrocatalytic Oxygen Reduction. Advanced Materials, 2019, 31, e1806312.	11.1	441
3	Dual Singleâ€Atomic Niâ€N ₄ and Feâ€N ₄ Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003134.	11.1	376
4	Ni ₃ Feâ€N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. Advanced Energy Materials, 2017, 7, 1601172.	10.2	369
5	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Airâ€Cathode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	10.2	248
6	One-Pot Water-Based Synthesis of Pt–Pd Alloy Nanoflowers and Their Superior Electrocatalytic Activity for the Oxygen Reduction Reaction and Remarkable Methanol-Tolerant Ability in Acid Media. Journal of Physical Chemistry C, 2013, 117, 9826-9834.	1.5	246
7	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 2016, 16, 6516-6522.	4.5	241
8	Regulating the Electronic Structure of CoP Nanosheets by O Incorporation for Highâ€Efficiency Electrochemical Overall Water Splitting. Advanced Functional Materials, 2020, 30, 1905252.	7.8	220
9	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy, 2017, 39, 77-85.	8.2	216
10	Zinc–air batteries: are they ready for prime time?. Chemical Science, 2019, 10, 8924-8929.	3.7	211
11	Anchoring CoFe ₂ O ₄ Nanoparticles on Nâ€Doped Carbon Nanofibers for Highâ€Performance Oxygen Evolution Reaction. Advanced Science, 2017, 4, 1700226.	5.6	206
12	Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. Journal of Power Sources, 2008, 175, 784-788.	4.0	204
13	Superior Oxygen Electrocatalysis on Nickel Indium Thiospinels for Rechargeable Zn–Air Batteries. , 2019, 1, 123-131.		199
14	Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon, 2019, 144, 557-566.	5.4	177
15	Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 2020, 395, 125160.	6.6	174
16	Encapsulation of Ni ₃ Fe Nanoparticles in Nâ€Đoped Carbon Nanotube–Grafted Carbon Nanofibers as Highâ€Efficiency Hydrogen Evolution Electrocatalysts. Advanced Functional Materials, 2018, 28, 1805828.	7.8	168
17	Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum–Copper Bimetallic Alloy Nanodendrites Electrocatalysts. ACS Applied Materials & Interfaces, 2014, 6, 7301-7308.	4.0	166
18	Hierarchically Porous Co/Co <i>_x</i> M <i>_y</i> (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries. Small, 2019, 15, e1901518.	5.2	163

#	Article	IF	CITATIONS
19	Robust N-doped carbon aerogels strongly coupled with iron–cobalt particles as efficient bifunctional catalysts for rechargeable Zn–air batteries. Nanoscale, 2018, 10, 19937-19944.	2.8	144
20	Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 2999-3006.	5.2	133
21	Oneâ€Pot Synthesis of Freestanding Porous Palladium Nanosheets as Highly Efficient Electrocatalysts for Formic Acid Oxidation. Advanced Functional Materials, 2017, 27, 1603852.	7.8	132
22	Preparation of carbon supported Pd–P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochemistry Communications, 2010, 12, 492-495.	2.3	131
23	Platinum–Cobalt alloy networks for methanol oxidation electrocatalysis. Journal of Materials Chemistry, 2012, 22, 23659.	6.7	131
24	Recent Advances in Carbonâ€Based Bifunctional Oxygen Electrocatalysts for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1424-1434.	1.7	129
25	Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 2015, 12, 824-832.	8.2	126
26	Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. , 2022, 1, 100020.		124
27	Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Research, 2014, 7, 1205-1214.	5.8	118
28	Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catalysis, 2016, 6, 5260-5267.	5.5	117
29	Gadoliniumâ€Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903833.	10.2	114
30	Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn–Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage. Nano Letters, 2018, 18, 3193-3198.	4.5	113
31	Hollow Co ₃ O ₄ /CeO ₂ Heterostructures in Situ Embedded in N-Doped Carbon Nanofibers Enable Outstanding Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 17950-17957.	3.2	112
32	Concave PtCo nanocrosses for methanol oxidation reaction. Applied Catalysis B: Environmental, 2020, 277, 119135.	10.8	109
33	A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell. Journal of Power Sources, 2006, 162, 177-179.	4.0	105
34	General Strategy for Synthesis of Ordered Pt ₃ M Intermetallics with Ultrasmall Particle Size. Angewandte Chemie - International Edition, 2020, 59, 7857-7863.	7.2	103
35	Nitrogen vacancies enriched Ce-doped Ni3N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. Journal of Energy Chemistry, 2022, 69, 506-515.	7.1	97
36	Recent progress in Co ₉ S ₈ -based materials for hydrogen and oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 16068-16088.	5.2	95

#	Article	IF	CITATIONS
37	Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Research, 2016, 9, 755-765.	5.8	94
38	One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry, 2012, 22, 13585.	6.7	92
39	Facile Synthesis of Porous Pd ₃ Pt Halfâ€Shells with Rich "Active Sites―as Efficient Catalysts for Formic Acid Oxidation. Small, 2018, 14, e1703940.	5.2	92
40	Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Advanced Science, 2019, 6, 1801103.	5.6	87
41	Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Research, 2018, 11, 499-510.	5.8	86
42	3D Space-Confined Pyrolysis of Double-Network Aerogels Containing In-Fe Cyanogel and Polyaniline: A New Approach to Hierarchically Porous Carbon with Exclusive Fe-N <i> _x </i> Active Sites for Oxygen Reduction Catalysis. Small Methods, 2017, 1, 1700167.	4.6	85
43	Facile synthesis of Pd–Co–P ternary alloy network nanostructures and their enhanced electrocatalytic activity towards hydrazine oxidation. Journal of Materials Chemistry A, 2014, 2, 1252-1256.	5.2	84
44	Robust bifunctional oxygen electrocatalyst with a "rigid and flexible―structure for air-cathodes. NPG Asia Materials, 2018, 10, 618-629.	3.8	83
45	Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol. Applied Catalysis B: Environmental, 2021, 282, 119595.	10.8	82
46	Facile synthesis of corallite-like Pt–Pd alloy nanostructures and their enhanced catalytic activity and stability for ethanol oxidation. Journal of Materials Chemistry A, 2014, 2, 13840.	5.2	81
47	Three-Dimensional Graphene-Supported Ni ₃ Fe/Co ₉ S ₈ Composites: Rational Design and Active for Oxygen Reversible Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4028-4036.	4.0	79
48	Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Research, 2017, 10, 3324-3332.	5.8	79
49	Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. Journal of Materials Chemistry A, 2018, 6, 10632-10638.	5.2	75
50	Recent advances in rare-earth-based materials for electrocatalysis. Chem Catalysis, 2022, 2, 967-1008.	2.9	75
51	Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon, 2019, 153, 364-371.	5.4	74
52	Manipulation of Mottâ^'Schottky Ni/CeO ₂ Heterojunctions into Nâ€Doped Carbon Nanofibers for Highâ€Efficiency Electrochemical Water Splitting. Small, 2022, 18, e2106592.	5.2	73
53	Cyanogel-Enabled Homogeneous Sb–Ni–C Ternary Framework Electrodes for Enhanced Sodium Storage. ACS Nano, 2018, 12, 759-767.	7.3	72
54	Surface chemical reconstruction of hierarchical hollow inverse-spinel manganese cobalt oxide boosting oxygen evolution reaction. Chemical Engineering Journal, 2022, 431, 133829.	6.6	72

#	Article	IF	CITATIONS
55	Catalytic activities for methanol oxidation on ultrathin CuPt ₃ wavy nanowires with/without smart polymer. Chemical Science, 2016, 7, 5414-5420.	3.7	71
56	Polyallylamine Functionalized Palladium Icosahedra: One-Pot Water-Based Synthesis and Their Superior Electrocatalytic Activity and Ethanol Tolerant Ability in Alkaline Media. Langmuir, 2013, 29, 4413-4420.	1.6	69
57	Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 3793.	1.3	68
58	Pd@Pt core–shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20855-20860.	5.2	67
59	Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Research, 2018, 11, 4686-4696.	5.8	67
60	Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway. ACS Applied Materials & Interfaces, 2016, 8, 31076-31082.	4.0	65
61	Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. Journal of Materials Chemistry A, 2019, 7, 24964-24972.	5.2	65
62	Polyhedral Palladium–Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction. Scientific Reports, 2015, 5, 13703.	1.6	64
63	Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode. Energy Storage Materials, 2021, 42, 118-128.	9.5	64
64	Inorganic Gel-Derived Metallic Frameworks Enabling High-Performance Silicon Anodes. Nano Letters, 2019, 19, 6292-6298.	4.5	63
65	Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Applied Catalysis B: Environmental, 2019, 243, 86-93.	10.8	63
66	Rareâ€Earth Singleâ€Atom Catalysts: A New Frontier in Photo/Electrocatalysis. Small Methods, 2022, 6, .	4.6	63
67	Porous PdRh nanobowls: facile synthesis and activity for alkaline ethanol oxidation. Nanoscale, 2019, 11, 2974-2980.	2.8	62
68	Atomically Dispersed Mo Sites Anchored on Multichannel Carbon Nanofibers toward Superior Electrocatalytic Hydrogen Evolution. ACS Nano, 2021, 15, 20032-20041.	7.3	62
69	Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale, 2014, 6, 8226-8234.	2.8	61
70	Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 17682-17687.	5.2	61
71	Facile water-based synthesis and catalytic properties of platinum–gold alloy nanocubes. CrystEngComm, 2014, 16, 1606-1610.	1.3	59
72	A General Strategy for the Synthesis of PtM (M=Fe, Co, Ni) Decorated Threeâ€Dimensional Hollow Graphene Nanospheres for Efficient Methanol Electrooxidation. Chemistry - A European Journal, 2018, 24, 1246-1252.	1.7	58

#	Article	IF	CITATIONS
73	Interfacial Engineeringâ€Triggered Bifunctionality of CoS ₂ /MoS ₂ Nanocubes/Nanosheet Arrays for Highâ€Efficiency Overall Water Splitting. ChemSusChem, 2021, 14, 699-708.	3.6	58
74	Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Research, 2016, 9, 2110-2122.	5.8	57
75	Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horizons, 2021, 6, 231-237.	4.1	57
76	Multiwalled carbon nanotubes supported palladium–phosphorus nanoparticles for ethanol electrooxidation in alkaline solution. Journal of Power Sources, 2012, 219, 258-262.	4.0	56
77	Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale, 2014, 6, 12310-12314.	2.8	56
78	Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries. Chemical Engineering Journal, 2022, 434, 134744.	6.6	55
79	Preparation of highly dispersed palladium–phosphorus nanoparticles and its electrocatalytic performance for formic acid electrooxidation. Electrochimica Acta, 2012, 59, 279-283.	2.6	54
80	Monodispersed hollow platinum nanospheres: facile synthesis and their enhanced electrocatalysis for methanol oxidation. Journal of Materials Chemistry A, 2014, 2, 13738-13743.	5.2	53
81	Atomically Dispersed CoN ₄ /B, N-C Nanotubes Boost Oxygen Reduction in Rechargeable Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 4539-4548.	2.5	53
82	In situ establishment of Co/MoS ₂ heterostructures onto inverse opalâ€structured N,Sâ€doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat, 2021, 2, 591-602.	6.4	52
83	Low‣oad Pt Nanoclusters Anchored on Graphene Hollow Spheres for Efficient Hydrogen Evolution. Small Structures, 2021, 2, 2000017.	6.9	51
84	One-step synthesis and catalytic properties of porous palladium nanospheres. Journal of Materials Chemistry, 2012, 22, 17604.	6.7	50
85	Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni5P4 hollow microspheres for hydrogen evolution. Chemical Engineering Journal, 2020, 402, 126302.	6.6	50
86	In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Research, 2020, 13, 975-982.	5.8	49
87	Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Applied Catalysis B: Environmental, 2013, 138-139, 167-174.	10.8	48
88	A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation. Scientific Reports, 2015, 5, 7619.	1.6	47
89	Designed synthesis of SnO ₂ @C yolk–shell spheres for high-performance lithium storage. CrystEngComm, 2014, 16, 517-521.	1.3	46
90	Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Research, 2016, 9, 3494-3503.	5.8	46

#	Article	IF	CITATIONS
91	l-Glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 3774-3779.	5.2	46
92	Cu ₅ Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS Applied Materials & Interfaces, 2019, 11, 34869-34877.	4.0	43
93	1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Research, 2019, 12, 323-329.	5.8	43
94	Embedded PdFe@N-carbon nanoframes for oxygen reduction in acidic fuel cells. Carbon, 2020, 164, 369-377.	5.4	43
95	Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 5248-5257.	5.2	42
96	Sub-5 nm palladium nanoparticles <i>in situ</i> embedded in N-doped carbon nanoframes: facile synthesis, excellent sinter resistance and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 26243-26249.	5.2	40
97	Synthesis of water-soluble phosphonate functionalized single-walled carbon nanotubes and their applications in biosensing. Journal of Materials Chemistry, 2012, 22, 15370.	6.7	39
98	Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Research, 2020, 13, 2691-2696.	5.8	39
99	N-carbon supported hierarchical Ni/Ni0.2Mo0.8N nanosheets as high-efficiency oxygen evolution electrocatalysts. Chemical Engineering Journal, 2020, 392, 124845.	6.6	39
100	Hydrogelâ€Derived Honeycomb Ni ₃ S ₄ /N,P as an Efficient Oxygen Evolution Catalyst. Chemistry - A European Journal, 2019, 25, 7561-7568.	1.7	38
101	A nitrogen-doped NiCo2S4/CoO hollow multi-layered heterostructure microsphere for efficient oxygen evolution in Zn–air batteries. Nanoscale, 2021, 13, 810-818.	2.8	38
102	Highly Reversible and Fast Lithium Storage in Grapheneâ€Wrapped SiO ₂ Nanotube Network. ChemElectroChem, 2015, 2, 508-511.	1.7	37
103	In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 16871-16876.	1.7	36
104	Shape Control of Monodispersed Subâ€5 nm Pd Tetrahedrons and Laciniate Pd Nanourchins by Maneuvering the Dispersed State of Additives for Boosting ORR Performance. Small, 2020, 16, e1906026.	5.2	36
105	3D Graphene Hollow Nanospheres@Palladiumâ€Networks as an Efficient Electrocatalyst for Formic Acid Oxidation. Advanced Materials Interfaces, 2015, 2, 1500321.	1.9	35
106	Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Research, 2015, 8, 3963-3971.	5.8	34
107	Metalâ€Organic Frameworkâ€Derived Feâ€Doped Co _{1.11} Te ₂ Embedded in Nitrogenâ€Doped Carbon Nanotube for Water Splitting. ChemSusChem, 2020, 13, 5239-5247.	3.6	34
108	Intermetallic Pd ₃ Pb nanocubes with high selectivity for the 4-electron oxygen reduction reaction pathway. Nanoscale, 2020, 12, 2532-2541.	2.8	33

#	Article	IF	CITATIONS
109	<scp>l</scp> -Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation. Journal of Materials Chemistry A, 2014, 2, 17883-17888.	5.2	31
110	Hollow and porous palladium nanocrystals: synthesis and electrocatalytic application. Journal of Materials Chemistry A, 2015, 3, 21995-21999.	5.2	31
111	Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation. Nanoscale, 2014, 6, 2776.	2.8	30
112	Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties. Nanoscale, 2015, 7, 18211-18217.	2.8	30
113	General Strategy for Synthesis of Pd ₃ M (M = Co and Ni) Nanoassemblies as Highâ€Performance Catalysts for Electrochemical Oxygen Reduction. Advanced Materials Interfaces, 2018, 5, 1701015.	1.9	30
114	Synthesis of Co/CeO ₂ hetero-particles with abundant oxygen-vacancies supported by carbon aerogels for ORR and OER. Nanoscale, 2022, 14, 1997-2003.	2.8	30
115	Synthesis and Electrocatalytic Properties of Palladium Network Nanostructures. ChemPlusChem, 2012, 77, 936-940.	1.3	27
116	Three-dimensional mesoporous Sn–Ni@C network derived from cyanogel coordination polymers: towards high-performance anodes for lithium storage. CrystEngComm, 2013, 15, 10340.	1.3	27
117	Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes. Nano Research, 2017, 10, 3164-3177.	5.8	27
118	White phosphorus derived PdAu–P ternary alloy for efficient methanol electrooxidation. Catalysis Science and Technology, 2017, 7, 3355-3360.	2.1	27
119	Atomic Crystal Facet Engineering of Core–Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. ACS Nano, 2021, 15, 5178-5188.	7.3	27
120	Encapsulation of Co/Co3O4 hetero-nanoparticles within the inner tips of N-doped carbon nanotubes: Engineering Mott-Schottky nanoreactors for efficient bifunctional oxygen electrocalysis toward flexible zinc-air batteries. Chemical Engineering Journal, 2022, 448, 137709.	6.6	27
121	A novel strategy for the synthesis of hollow Pt–Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation. CrystEngComm, 2019, 21, 1903-1909.	1.3	26
122	Chemically Binding Scaffolded Anodes with 3D Graphene Architectures Realizing Fast and Stable Lithium Storage. Research, 2019, 2019, 8393085.	2.8	26
123	Surfactant-free palladium nanodendrite assemblies with enhanced electrocatalytic performance for formic acid oxidation. Electrochemistry Communications, 2013, 32, 43-46.	2.3	25
124	Breaking the lattice match of Pd on Au(111) nanowires: manipulating the island and epitaxial growth pathways to boost the oxygen reduction reactivity. Journal of Materials Chemistry A, 2020, 8, 19300-19308.	5.2	25
125	Electronic structural regulation of CoP nanorods by the tunable incorporation of oxygen for enhanced electrocatalytic activity during the hydrogen evolution reaction. Nanoscale, 2020, 12, 14733-14738.	2.8	25
126	Coupling the Atomically Dispersed Feâ€N ₃ Sites with Subâ€5Ânm Pd Nanocrystals Confined in Nâ€Doped Carbon Nanobelts to Boost the Oxygen Reduction for Microbial Fuel Cells. Advanced Functional Materials, 2022, 32, 2107683.	7.8	24

#	Article	IF	CITATIONS
127	Pd nanochains: Controlled synthesis by lysine and application in microbial fuel cells. Chemical Engineering Journal, 2020, 379, 122230.	6.6	23
128	Preparation of carbon supported Pt–P catalysts and its electrocatalytic performance for oxygen reduction. Applied Surface Science, 2011, 257, 6494-6497.	3.1	22
129	Layerâ€By‣ayer Selfâ€Assembly of Sulphydrylâ€Functionalized Multiwalled Carbon Nanotubes and Phosphateâ€Functionalized Gold Nanoparticles: Detection of Hydrazine. ChemPlusChem, 2012, 77, 914-922.	1.3	22
130	Graphene-wrapped single-crystalline Fe ₃ O ₄ nanorods with superior lithium-storage capabilities. New Journal of Chemistry, 2014, 38, 4036.	1.4	22
131	Hybrid aerogel-derived Sn–Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage. Journal of Colloid and Interface Science, 2017, 501, 267-272.	5.0	22
132	A facile, one-pot synthesis of highly branched Au nanocorals and their enhanced electrocatalytic activity for ethanol oxidation. CrystEngComm, 2014, 16, 8576-8581.	1.3	21
133	Facile preparation of CuO@SnO ₂ nanobelts as a high-capacity and long-life anode for lithium-ion batteries. RSC Advances, 2014, 4, 34417-34420.	1.7	21
134	Arginine-assisted synthesis of palladium nanochain networks and their enhanced electrocatalytic activity for borohydride oxidation. RSC Advances, 2015, 5, 18111-18115.	1.7	21
135	Carbon supported ultrafine gold phosphorus nanoparticles as highly efficient electrocatalyst for alkaline ethanol oxidation reaction. Electrochimica Acta, 2017, 231, 13-19.	2.6	21
136	Highâ€₽erformance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity. Particle and Particle Systems Characterization, 2018, 35, 1700366.	1.2	21
137	MoS _{0.5} Se _{1.5} Embedded in 2D Porous Carbon Sheets Boost Lithium Storage Performance as an Anode Material. Advanced Materials Interfaces, 2018, 5, 1701604.	1.9	20
138	General Strategy for Synthesis of Ordered Pt ₃ M Intermetallics with Ultrasmall Particle Size. Angewandte Chemie, 2020, 132, 7931-7937.	1.6	20
139	Facile synthesis of graphene supported FeSn2 nanocrystals with enhanced Li-storage capability. RSC Advances, 2014, 4, 17401.	1.7	19
140	Achieving Highly Electrocatalytic Performance by Constructing Holey Reduced Graphene Oxide Hollow Nanospheres Sandwiched by Interior and Exterior Platinum Nanoparticles. ACS Applied Energy Materials, 2018, 1, 2341-2349.	2.5	19
141	Ultrafine Ir Nanowires with Microporous Channels and Superior Electrocatalytic Activity for Oxygen Evolution Reaction. ChemCatChem, 2020, 12, 3060-3067.	1.8	19
142	<i>In situ</i> immobilization of Fe/Fe ₃ C/Fe ₂ O ₃ hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction. Nanoscale, 2021, 13, 5400-5409.	2.8	19
143	Recent Advances in Aminoâ€Based Molecules Assisted Control of Nobleâ€Metal Electrocatalysts. Small, 2021, 17, 2007179.	5.2	19
144	Boosting Electrocatalytic Oxygen Evolution over CeⰒCo ₉ S ₈ Core–Shell Nanoneedle Arrays by Electronic and Architectural Dual Engineering. Chemistry - A European Journal, 2022, 28, .	1.7	19

#	Article	IF	CITATIONS
145	PtCu nanodendrite-assisted synthesis of PtPdCu concave nanooctahedra for efficient electrocatalytic methanol oxidation. Catalysis Science and Technology, 2015, 5, 5105-5109.	2.1	18
146	FeOOH-Templated synthesis of hollow porous platinum nanotubes as superior electrocatalysts towards methanol electrooxidation. New Journal of Chemistry, 2017, 41, 8812-8817.	1.4	18
147	Immobilization of Fe-Doped Ni2P Particles Within Biomass Agarose-Derived Porous N,P-Carbon Nanosheets for Efficient Bifunctional Oxygen Electrocatalysis. Frontiers in Chemistry, 2019, 7, 523.	1.8	18
148	Ptâ€Like Oxygen Reduction Activity Induced by Costâ€Effective MnFeO ₂ /Nâ€Carbon. Chemistry - A European Journal, 2019, 25, 6226-6232.	1.7	18
149	One-pot synthesis of Ag-rich AgPd alloy nanoactiniae and their enhanced electrocatalytic activity toward oxygen reduction. Journal of Energy Chemistry, 2019, 28, 111-117.	7.1	18
150	Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Materials Today Energy, 2021, 22, 100850.	2.5	18
151	PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance. Scientific Reports, 2016, 6, 32402.	1.6	17
152	Facile formation of Fe-doped NiCoP hollow nanocages as bifunctional electrocatalysts for overall water splitting. CrystEngComm, 2021, 23, 3861-3869.	1.3	17
153	Facile synthesis and electrocatalytic properties of dendritic palladium nanostructures. CrystEngComm, 2014, 16, 10445-10450.	1.3	15
154	Facile synthesis of a graphene/nickel-cobalt hydroxide ternary hydrogel for high-performance supercapacitors. Journal of Colloid and Interface Science, 2018, 531, 593-601.	5.0	15
155	Cyano-bridged coordination polymer gel as a precursor to a nanoporous In2O3–Co3O4 hybrid network for high-capacity and cycle-stable lithium storage. New Journal of Chemistry, 2015, 39, 8249-8253.	1.4	14
156	Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic properties towards formic acid oxidation. Nanoscale, 2019, 11, 18015-18020.	2.8	14
157	In Situ Growth of Ultrafine Pt Nanoparticles onto Hierarchical Co ₃ O ₄ Nanosheetâ€Assembled Microflowers for Efficient Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 15103-15108.	1.7	13
158	N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting. Green Energy and Environment, 2022, 7, 1111-1118.	4.7	13
159	Selfâ€Templatingâ€Oriented Manipulation of Ultrafine Pt ₃ Cu Alloyed Nanoparticles into Asymmetric Porous Bowlâ€Shaped Configuration for Highâ€Efficiency Methanol Electrooxidation. Small, 2022, 18, .	5.2	13
160	Concave PtCo nanooctahedra with high-energy {110} facets for the oxygen reduction reaction. CrystEngComm, 2020, 22, 1541-1546.	1.3	12
161	Interpenetrating gels as conducting/adhering matrices enabling high-performance silicon anodes. Journal of Materials Chemistry A, 2021, 9, 12003-12008.	5.2	12
162	Water-based synthesis and sensing application of polyallylamine functionalized platinum nanodendrite assemblies. Journal of Materials Chemistry A, 2013, 1, 14874.	5.2	11

#	Article	IF	CITATIONS
163	Synthesis, Selfâ€Assembly, and Electrocatalysis of Polyallylamineâ€Functionalized Platinum Nanocubes. ChemPlusChem, 2013, 78, 623-627.	1.3	11
164	High-density growth of ultrafine PdIr nanowires on graphene: reducing the graphene wrinkles and serving as efficient bifunctional electrocatalysts for water splitting. Nanoscale, 2019, 11, 14561-14568.	2.8	11
165	Modulating Hydroxylâ€Rich Interfaces on Nickel–Copper Double Hydroxide Nanotyres to Preâ€activate Alkaline Ammonia Oxidation Reactivity. Chemistry - A European Journal, 2021, 27, 4869-4875.	1.7	11
166	Atomically ordered Rh ₂ P catalysts anchored within hollow mesoporous carbon for efficient hydrogen production. Chemical Communications, 2021, 57, 12345-12348.	2.2	11
167	Stable and fast Siâ^'Mâ^'C ternary anodes enabled by interfacial engineering. Journal of Power Sources, 2022, 530, 231290.	4.0	11
168	Designed synthesis of NiO@polypyrrole hollow spheres for long-life lithium storage. Ionics, 2015, 21, 359-364.	1.2	10
169	Hermetically Coated and Wellâ€Separated Co ₃ O ₄ Nanophase within Porous Graphitic Carbon Nanosheets: Synthesis, Confinement Effect, and Improved Lithiumâ€Storage Capacity and Durability. Chemistry - A European Journal, 2016, 22, 9599-9606.	1.7	10
170	Recent advances in phosphorus containing noble metal electrocatalysts for direct liquid fuel cells. Nanoscale, 2021, 13, 16052-16069.	2.8	10
171	The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. Nanoscale Advances, 2021, 3, 1813-1829.	2.2	10
172	Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1091-1099.	3.0	10
173	Nanotube-shaped PtFe intermetallics: controlled synthesis, crystal structure, and improved electrocatalytic activities. CrystEngComm, 2018, 20, 4277-4282.	1.3	9
174	Construction of Ir-Co/C nanocomposites and their application in ammonia oxidation reaction. Journal of Electroanalytical Chemistry, 2019, 838, 101-106.	1.9	9
175	Highlyâ€Branched Palladium Nanodandelions: Simple, Fast, and Green Fabrication with Superior Oxygen Reduction Property. Chemistry - A European Journal, 2019, 25, 4920-4926.	1.7	9
176	Facile fabrication of hierarchical Rh ₂ Ir alloy nanodendrites with excellent HER performance in a broad pH range. New Journal of Chemistry, 2020, 44, 21021-21025.	1.4	9
177	Coupling isolated Ni single atoms with sub-10 nm Pd nanocrystals embedded in porous carbon frameworks to boost oxygen electrocatalysis for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 6086-6095.	5.2	9
178	Polyamine-assisted hydrothermal synthesis of bimetallic Pd ₁ Cu ₃ multipods and their high catalytic ability in 4-nitrophenol reduction. RSC Advances, 2014, 4, 57144-57147.	1.7	8
179	Highly dispersed ultrafine palladium nanoparticles on three-dimensional mesoporous carbon for	1.2	8
180	Covalent binding of holey Si–SiC layer on graphene aerogel with enhanced lithium storage kinetics and capability. Surface and Coatings Technology, 2021, 420, 127336.	2.2	8

#	Article	IF	CITATIONS
181	Synthesis and characterization of multi–wall carbon nanotubes supported-hydrated iron phosphate cathode material for lithium–ion cells by a novel homogeneous precipitation method. Ionics, 2012, 18, 721-729.	1.2	7
182	General Self-Assembly Route toward Sparsely Studded Noble-Metal Nanocrystals inside Graphene Hollow Sphere Network for Ultrastable Electrocatalyst Utilization. ACS Applied Materials & Interfaces, 2015, 7, 20061-20067.	4.0	7
183	Facile synthesis and electrocatalytic application of phosphonate functionalized platinum nanodendrites. CrystEngComm, 2013, 15, 8929.	1.3	6
184	<i>In situ</i> immobilization of isolated Pd single-atoms on graphene by employing amino-functionalized rigid molecules and their prominent catalytic performance. Catalysis Science and Technology, 2020, 10, 450-457.	2.1	6
185	Atomâ€Ratioâ€Conducted Tailoring of PdAu Bimetallic Nanocrystals with Distinctive Shapes and Dimensions for Boosting the ORR Performance. Chemistry - A European Journal, 2020, 26, 4480-4488.	1.7	6
186	Modification of surface electronic structure via Ru-doping: Porous Ru–CoFeP nanocubes to boost the oxygen evolution reaction. Journal of Power Sources, 2022, 537, 231506.	4.0	5
187	Ethylenediamine tetramethylene phosphonic acid assisted synthesis of palladium nanocubes and their electrocatalysis of formic acid oxidation. Journal of Solid State Electrochemistry, 2017, 21, 1297-1303.	1.2	4
188	<i>ChemElectroChem</i> : Beyond Lithiumâ€lon Batteries. ChemElectroChem, 2021, 8, 1149-1149.	1.7	4
189	Hollow platinum tetrapods: using a combination of {111} facets, surface concave topology, and ultrathin walls to boost their oxygen reduction reactivity. Journal of Materials Chemistry A, 2021, 9, 11537-11544.	5.2	4
190	Carbon Nanotubes Interconnected NiCo Layered Double Hydroxide Rhombic Dodecahedral Nanocages for Efficient Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 1015.	1.9	4
191	Induction of Au-methotrexate conjugates by sugar molecules: production, assembly mechanism, and bioassay studies. International Journal of Pharmaceutics, 2018, 538, 65-78.	2.6	3
192	Agar-induced hollow porous carbon nanospheres anchored platinum for high-performance hydrogenation. Chemosphere, 2020, 243, 125387.	4.2	3
193	Coupling Hierarchical Ultrathin Co Nanosheets With N-Doped Carbon Plate as High-Efficiency Oxygen Evolution Electrocatalysts. Frontiers in Nanotechnology, 2021, 3, .	2.4	3
194	Oneâ€Step Template/Solventâ€Free Pyrolysis for In Situ Immobilization of CoP Nanoparticles onto N and P Coâ€Doped Carbon Porous Nanosheets towards Highâ€efficiency Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 9850-9857.	1.7	3
195	Cyanogroup functionalized sub-2 nm ultrafine Pt nanonetworks reinforce electrocatalytic hydrogen evolution in a broad pH range. CrystEngComm, 2021, 23, 7932-7937.	1.3	3

Pd Growth Patterns: Shape Control of Monodispersed Subâ€5 nm Pd Tetrahedrons and Laciniate Pd Nanourchins by Maneuvering the Dispersed State of Additives for Boosting ORR Performance (Small) Tj ETQq0 0 0 5gBT /Ovedock 10 Tf 196