
Cheng-Lin Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9320657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode. Journal of Energy Chemistry, 2022, 64, 496-502.	7.1	28
2	Ni3S2@Ni5P4 nanosheets as highly productive catalyst for electrocatalytic oxygen evolution. Chemical Engineering Science, 2022, 247, 117020.	1.9	12
3	Interfacial Microextraction Boosting Nitrogen Feed for Efficient Ambient Ammonia Synthesis in Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	41
4	Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Materials, 2022, 47, 122-133.	9.5	28
5	Recent advances in material design and reactor engineering for electrocatalytic ambient nitrogen fixation. Materials Chemistry Frontiers, 2022, 6, 843-879.	3.2	14
6	A Lewis acidity adjustable organic ammonium cation derived robust protecting shield for stable aqueous zinc-ion batteries by inhibiting the tip effect. Materials Chemistry Frontiers, 2022, 6, 901-907.	3.2	13
7	Diminishing Interfacial Turbulence by Colloidâ€Polymer Electrolyte to Stabilize Zinc Ion Flux for Deep ycling Zn Metal Batteries. Advanced Materials, 2022, 34, e2200131.	11.1	54
8	New Type of Dynamically "Solid–Liquid―Interconvertible Electrolyte for High-Rate Zn Metal Battery. Nano Letters, 2022, 22, 2898-2906.	4.5	13
9	Accelerated Ionic and Charge Transfer through Atomic Interfacial Electric Fields for Superior Sodium Storage. ACS Nano, 2022, 16, 4775-4785.	7.3	28
10	Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Metals, 2022, 41, 1851-1858.	3.6	10
11	Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended pâ^'Ï€ Conjugation of Dioxin. Nano Letters, 2022, 22, 3473-3479.	4.5	14
12	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
13	Implanting an ion-selective "skin―in electrolyte towards high-energy and safe lithium-sulfur battery. Matter, 2022, 5, 2225-2237.	5.0	14
14	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. Energy Storage Materials, 2022, 49, 555-563.	9.5	10
15	Cationic Covalent Organic Framework with Ultralow HOMO Energy Used as Scaffolds for 5.2 V Solid Polycarbonate Electrolytes. Advanced Science, 2022, 9, .	5.6	19
16	Unity of Opposites between Soluble and Insoluble Lithium Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, .	11.1	38
17	Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8, nwaa136.	4.6	64
18	Rapid leakage responsive and self-healing Li-metal batteries. Chemical Engineering Journal, 2021, 404, 126470.	6.6	26

#	Article	IF	CITATIONS
19	Insight into the reaction mechanism of sulfur chains adjustable polymer cathode for high-loading lithium-organosulfur batteries. Journal of Energy Chemistry, 2021, 56, 238-244.	7.1	28
20	Boosting Oxygen Dissociation over Bimetal Sites to Facilitate Oxygen Reduction Activity of Zincâ€Air Battery. Advanced Functional Materials, 2021, 31, 2006533.	7.8	64
21	A novel oneâ€step reactionÂsodiumâ€sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber. , 2021, 3, 440-448.		31
22	Highly efficient lithium utilization in lithium metal full-cell by simulated missile guidance and confinement systems. Science China Materials, 2021, 64, 830-839.	3.5	6
23	In-situ tracking of phase conversion reaction induced metal/metal oxides for efficient oxygen evolution. Science China Materials, 2021, 64, 362-373.	3.5	19
24	Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nature Catalysis, 2021, 4, 322-331.	16.1	216
25	Propagation of Spin Waves in a 2D Vortex Network. Nano Letters, 2021, 21, 4708-4714.	4.5	10
26	Salting-out effect promoting highly efficient ambient ammonia synthesis. Nature Communications, 2021, 12, 3198.	5.8	105
27	Engineering Fe–N Coordination Structures for Fast Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100171.	11.1	167
28	Healable Lithium Alloy Anode with Ultrahigh Capacity. Nano Letters, 2021, 21, 5021-5027.	4.5	21
29	Surface Sulfur Vacancy Engineering of Metal Sulfides Promoted Desorption of Hydrogen Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 12707-12712.	1.5	21
30	Accelerating Ion Dynamics Under Cryogenic Conditions by the Amorphization of Crystalline Cathodes. Advanced Materials, 2021, 33, e2102634.	11.1	46
31	Functional-selected LiF-intercalated-graphene enabling ultra-stable lithium sulfur battery. Journal of Energy Chemistry, 2021, 58, 78-84.	7.1	17
32	All-Liquid-Phase Reaction Mechanism Enabling Cryogenic Li–S Batteries. ACS Nano, 2021, 15, 13847-13856.	7.3	55
33	Paired Electrochemical N–N Coupling Employing a Surface-Hydroxylated Ni ₃ Fe-MOF-OH Bifunctional Electrocatalyst with Enhanced Adsorption of Nitroarenes and Anilines. ACS Catalysis, 2021, 11, 13510-13518.	5.5	26
34	Molecular Simulations Guided Polymer Electrolyte towards Superior Low-Temperature Solid Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48810-48817.	4.0	16
35	Atomic Heterointerface Boosts the Catalytic Activity toward Oxygen Reduction/Evolution Reaction. Advanced Energy Materials, 2021, 11, 2102235.	10.2	19
36	In Situ/Operando Spectroscopic Characterizations Guide the Compositional and Structural Design of Lithium–Sulfur Batteries. Small Methods, 2020, 4, 1900467.	4.6	42

#	Article	IF	CITATIONS
37	Single lithium-ion channel polymer binder for stabilizing sulfur cathodes. National Science Review, 2020, 7, 315-323.	4.6	43
38	Dendrite–free and Ultra–High energy lithium sulfur battery enabled by dimethyl polysulfide intermediates. Energy Storage Materials, 2020, 24, 265-271.	9.5	26
39	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 1447-1479.	3.6	49
40	Super lithiophilic SEI derived from quinones electrolyte to guide Li uniform deposition. Energy Storage Materials, 2020, 24, 426-431.	9.5	34
41	Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer. Energy Storage Materials, 2020, 26, 385-390.	9.5	52
42	Mg Doped Li–LiB Alloy with In Situ Formed Lithiophilic LiB Skeleton for Lithium Metal Batteries. Advanced Science, 2020, 7, 1902643.	5.6	106
43	Identifying the Lewis Base Chemistry in Preventing the Deposition of Metal Oxides on Ketone-Enriched Carbon Cathodes for Highly Durable Metal–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 3603-3609.	4.0	9
44	Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochimica Acta, 2020, 334, 135562.	2.6	45
45	Stitching of Zn ₃ (OH) ₂ V ₂ O ₇ ·2H ₂ O 2D Nanosheets by 1D Carbon Nanotubes Boosts Ultrahigh Rate for Wearable Quasi-Solid-State Zinc-Ion Batteries. ACS Nano, 2020, 14, 842-853.	7.3	183
46	Boronâ€Modified Electron Transfer in Metallic 1T MoSe ₂ for Enhanced Inherent Activity on Perâ€Catalytic Site toward Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 1901560.	1.9	22
47	Mechanically Robust Gel Polymer Electrolyte for an Ultrastable Sodium Metal Battery. Small, 2020, 16, e1906208.	5.2	42
48	Novel Organophosphateâ€Derived Dualâ€Layered Interface Enabling Airâ€Stable and Dendriteâ€Free Lithium Metal Anode. Advanced Materials, 2020, 32, e1902724.	11.1	83
49	Boosting the Optimization of Lithium Metal Batteries by Molecular Dynamics Simulations: A Perspective. Advanced Energy Materials, 2020, 10, 2002373.	10.2	56
50	An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Materials, 2020, 33, 290-297.	9.5	69
51	Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54537-54544.	4.0	49
52	Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Metals, 2020, 39, 458-459.	3.6	31
53	Atomic Metal Vacancy Modulation of Single-Atom Dispersed Co/N/C for Highly Efficient and Stable Air Cathode. ACS Applied Materials & Interfaces, 2020, 12, 15298-15304.	4.0	33
54	Single-atom scale metal vacancy engineering in heteroatom-doped carbon for rechargeable zinc-air battery with reduced overpotential. Chemical Engineering Journal, 2020, 393, 124702.	6.6	43

#	Article	IF	CITATIONS
55	Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Advanced Functional Materials, 2020, 30, 2001244.	7.8	49
56	In-situ observation as activity descriptor enables rational design of oxygen reduction catalyst for zinc-air battery. Energy Storage Materials, 2020, 27, 226-231.	9.5	42
57	Bimetal Schottky Heterojunction Boosting Energy‧aving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000556.	7.8	216
58	Wiping off oxygen bonding to maximize heteroatom-induced improvement in oxygen reaction activity of metal site for high-performance zinc-air battery. Nanotechnology, 2020, 31, 195403.	1.3	1
59	Atom removal on the basal plane of layered MoS2 leading to extraordinarily enhanced electrocatalytic performance. Electrochimica Acta, 2020, 336, 135740.	2.6	16
60	Toward safer solid-state lithium metal batteries: a review. Nanoscale Advances, 2020, 2, 1828-1836.	2.2	50
61	Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier. Advanced Science, 2020, 7, 1903246.	5.6	109
62	Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. Nanotechnology, 2020, 31, 315401.	1.3	6
63	In situ evolved NiMo/NiMoO ₄ nanorods as a bifunctional catalyst for overall water splitting. Nanotechnology, 2020, 31, 495404.	1.3	14
64	Strongly trapping soluble lithium polysulfides using polar cysteamine groups for highly stable lithium sulfur batteries. Nanotechnology, 2020, 31, 485403.	1.3	4
65	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 111-117.	9.5	54
66	High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Materials, 2019, 17, 260-265.	9.5	35
67	Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 20952-20957.	5.2	117
68	Single-Atom Iron as Lithiophilic Site To Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery. ACS Applied Materials & Interfaces, 2019, 11, 32008-32014.	4.0	64
69	Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochimica Acta, 2019, 321, 134672.	2.6	42
70	Updating the Intrinsic Activity of a Single-Atom Site with a P–O Bond for a Rechargeable Zn–Air Battery. ACS Applied Materials & Interfaces, 2019, 11, 33054-33061.	4.0	47
71	A New Type of Electrolyte System To Suppress Polysulfide Dissolution for Lithium–Sulfur Battery. ACS Nano, 2019, 13, 9067-9073.	7.3	69
72	CuCo ₂ S ₄ Nanosheets@Nâ€Doped Carbon Nanofibers by Sulfurization at Room Temperature as Bifunctional Electrocatalysts in Flexible Quasiâ€Solidâ€State Zn–Air Batteries. Advanced Science, 2019, 6, 1900628.	5.6	123

#	Article	IF	CITATIONS
73	Trifluoropropylene Carbonateâ€Driven Interface Regulation Enabling Greatly Enhanced Lithium Storage Durability of Siliconâ€Based Anodes. Advanced Functional Materials, 2019, 29, 1906548.	7.8	49
74	Nonflammable and High-Voltage-Tolerated Polymer Electrolyte Achieving High Stability and Safety in 4.9 V-Class Lithium Metal Battery. ACS Applied Materials & Interfaces, 2019, 11, 45048-45056.	4.0	73
75	Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nature Communications, 2019, 10, 3898.	5.8	191
76	Stabilizing cathodes of lithium–sulfur batteries by the chemical binding of sulfur and their discharge products to carbon nanofibers. New Journal of Chemistry, 2019, 43, 15267-15274.	1.4	7
77	Mega High Utilization of Sodium Metal Anodes Enabled by Single Zinc Atom Sites. Nano Letters, 2019, 19, 7827-7835.	4.5	86
78	Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nature Communications, 2019, 10, 341.	5.8	412
79	A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Materials, 2019, 22, 256-264.	9.5	89
80	Single-cluster Au as an usher for deeply cyclable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 14496-14503.	5.2	51
81	Selenium-Doped Carbon Nanosheets with Strong Electron Cloud Delocalization for Nondeposition of Metal Oxides on Air Cathode of Zinc–Air Battery. ACS Applied Materials & Interfaces, 2019, 11, 20056-20063.	4.0	46
82	High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 2019, 19, 3066-3073.	4.5	108
83	Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications, 2019, 10, 900.	5.8	297
84	Aluminumâ€Tailored Energy Level and Morphology of Co _{3â^'} <i>_x</i> Al <i>_x</i> O ₄ Porous Nanosheets toward Highly Efficient Electrocatalysts for Water Oxidation. Small, 2019, 15, e1804886.	5.2	30
85	A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24477-24485.	5.2	51
86	Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 27535-27546.	5.2	28
87	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	5.8	144
88	PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 2019, 22, 29-39.	9.5	65
89	Enhanced Interfacial Kinetics of Carbon Monolith Boosting Ultrafast Naâ€Storage. Small, 2019, 15, 1804158.	5.2	17
90	Recent Progress on Molybdenum Oxides for Rechargeable Batteries. ChemSusChem, 2019, 12, 755-771.	3.6	37

#	Article	IF	CITATIONS
91	SnS2 quantum dots growth on MoS2: Atomic-level heterostructure for electrocatalytic hydrogen evolution. Electrochimica Acta, 2019, 300, 45-52.	2.6	42
92	Oxidizing Vacancies in Nitrogenâ€Doped Carbon Enhance Airâ€Cathode Activity. Advanced Materials, 2019, 31, e1803339.	11.1	52
93	<i>In situ</i> optical spectroscopy characterization for optimal design of lithium–sulfur batteries. Chemical Society Reviews, 2019, 48, 5432-5453.	18.7	120
94	Biobatteries: Ultralongâ€Dischargeâ€Time Biobattery Based on Immobilized Enzymes in Bilayer Rolledâ€Up Enzymatic Nanomembranes (Small 13/2018). Small, 2018, 14, 1870058.	5.2	2
95	Blending Fe 3 O 4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochimica Acta, 2018, 264, 225-232.	2.6	42
96	Designing Safe Electrolyte Systems for a High‣tability Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702348.	10.2	266
97	High Lithium Ion Conductivity LiF/GO Solid Electrolyte Interphase Inhibiting the Shuttle of Lithium Polysulfides in Longâ€Life Li–S Batteries. Advanced Functional Materials, 2018, 28, 1706513.	7.8	109
98	Ultralongâ€Dischargeâ€Time Biobattery Based on Immobilized Enzymes in Bilayer Rolledâ€Up Enzymatic Nanomembranes. Small, 2018, 14, e1704221.	5.2	11
99	High Edge Selectivity of In Situ Electrochemical Pt Deposition on Edgeâ€Rich Layered WS ₂ Nanosheets. Advanced Materials, 2018, 30, 1704779.	11.1	84
100	A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for Highâ€Performance Sulfur Electrodes in Lithium‧ulfur Battery. Advanced Energy Materials, 2018, 8, 1702889.	10.2	270
101	Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Materials, 2018, 15, 53-64.	9.5	131
102	Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule, 2018, 2, 2091-2104.	11.7	345
103	Singleâ€Nanostructured Electrochemical Detection for Intrinsic Mechanism of Energy Storage: Progress and Prospect. Small, 2018, 14, e1803482.	5.2	4
104	Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogenâ€ l on Storage. Angewandte Chemie, 2018, 130, 11743-11747.	1.6	20
105	Understanding of the Ultrastable Kâ€lon Storage of Carbonaceous Anode. Advanced Functional Materials, 2018, 28, 1801989.	7.8	159
106	Use of Tween Polymer To Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium–Sulfur Battery. Nano Letters, 2018, 18, 4598-4605.	4.5	81
107	Rücktitelbild: Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage (Angew.) Tj ETQq1	1 0.78431 1.6	4 rgBT /Ove
108	Greatly Improved Conductivity of Doubleâ€Chain Polymer Network Binder for High Sulfur Loading	5.2	47

Lithiumâ€"Sulfur Batteries with a Low Electrolyte/Sulfur Ratio. Small, 2018, 14, e1801536. 108

5.247

#	Article	IF	CITATIONS
109	Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen″on Storage. Angewandte Chemie - International Edition, 2018, 57, 11569-11573.	7.2	116
110	Atomic Interlamellar Ion Path in High Sulfur Content Lithiumâ€Montmorillonite Host Enables Highâ€Rate and Stable Lithium–Sulfur Battery. Advanced Materials, 2018, 30, e1804084.	11.1	201
111	Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30058-30064.	4.0	49
112	Nitrogen-Doped Carbon Coated WS2 Nanosheets as Anode for High-Performance Sodium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 236.	1.8	22
113	Freestanding Electrode Pairs with High Areal Density Fabricated under High Pressure and High Temperature for Flexible Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3171-3179.	2.5	13
114	Facilitated Oxygen Chemisorption in Heteroatomâ€Doped Carbon for Improved Oxygen Reaction Activity in Allâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2018, 30, 1704898.	11.1	135
115	An Efficient Bifunctional Electrocatalyst for a Zinc–Air Battery Derived from Fe/N/C and Bimetallic Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2017, 9, 5213-5221.	4.0	113
116	A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries. Advanced Materials, 2017, 29, 1605160.	11.1	284
117	Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21216-21224.	4.0	64
118	Ni/Fe Ratio Dependence of Catalytic Activity in Monodisperse Ternary Nickel Iron Phosphide for Efficient Water Oxidation. ChemElectroChem, 2017, 4, 2150-2157.	1.7	44
119	Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 2017, 17, 538-543.	4.5	271
120	Active Feâ€N <i>_x</i> Sites in Carbon Nanosheets as Oxygen Reduction Electrocatalyst for Flexible Allâ€6olidâ€6tate Zinc–Air Batteries. Advanced Sustainable Systems, 2017, 1, 1700085.	2.7	43
121	Stabilized Lithium–Sulfur Batteries by Covalently Binding Sulfur onto the Thiolâ€Terminated Polymeric Matrices. Small, 2017, 13, 1702104.	5.2	34
122	High coulombic efficiency and high-rate capability lithium sulfur batteries with low-solubility lithium polysulfides by using alkylene radicals to covalently connect sulfur. Nano Energy, 2017, 41, 758-764.	8.2	37
123	Porous yolk–shell microspheres as N–doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials. Nanotechnology, 2017, 28, 365403.	1.3	10
124	Batteries: Seleniumâ€Doped Cathodes for Lithium–Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency (Adv. Mater. 33/2017). Advanced Materials, 2017, 29, .	11.1	1
125	Ultraâ€High Pyridinic Nâ€Doped Porous Carbon Monolith Enabling Highâ€Capacity Kâ€Ion Battery Anodes for Both Halfâ€Cell and Fullâ€Cell Applications. Advanced Materials, 2017, 29, 1702268.	11.1	348
126	Seleniumâ€Doped Cathodes for Lithium–Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency. Advanced Materials, 2017, 29, 1701294.	11.1	126

Cheng-Lin Yan

#	Article	IF	CITATIONS
127	TiO ₂ Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium–Sulfur Batteries. Small, 2017, 13, 1701013.	5.2	147
128	Confined silicon nanospheres by biomass lignin for stable lithium ion battery. Nanotechnology, 2017, 28, 405401.	1.3	19
129	Electronic Modulation of Electrocatalytically Active Center of Cu ₇ S ₄ Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction. ACS Nano, 2017, 11, 12230-12239.	7.3	139
130	Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 2017, 17, 5064-5070.	4.5	112
131	Stationary Full Li-Ion Batteries with Interlayer-Expanded V6O13 Cathodes and Lithiated Graphite Anodes. Electrochimica Acta, 2016, 203, 171-177.	2.6	42
132	Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life. Nanoscale, 2016, 8, 15497-15504.	2.8	35
133	Na+Fuel Cells: Half-Cell and Full-Cell Applications of Highly Stable and Binder-Free Sodium Ion Batteries Based on Cu3P Nanowire Anodes (Adv. Funct. Mater. 28/2016). Advanced Functional Materials, 2016, 26, 5002-5002.	7.8	5
134	Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small, 2016, 12, 3888-3907.	5.2	91
135	Halfâ€Cell and Fullâ€Cell Applications of Highly Stable and Binderâ€Free Sodium Ion Batteries Based on Cu ₃ P Nanowire Anodes. Advanced Functional Materials, 2016, 26, 5019-5027.	7.8	243
136	A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogenâ€Doped Carbon Sheets for Efficient Sodium Ion Batteries. Advanced Materials, 2016, 28, 539-545.	11.1	384
137	Core–Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5358-5365.	4.0	60
138	Bifunctional Au–Pd decorated MnO _x nanomembranes as cathode materials for Li–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 4155-4160.	5.2	29
139	Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45, 1308-1330.	18.7	167
140	Pd-functionalized MnO –GeOy nanomembranes as highly efficient cathode materials for Li–O2 batteries. Nano Energy, 2016, 19, 428-436.	8.2	41
141	Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 6701-6709.	7.8	173
142	Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon, 2015, 92, 348-353.	5.4	71
143	On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology, 2015, 26, 425402.	1.3	30
144	Sandwich Nanoarchitecture of Si/Reduced Graphene Oxide Bilayer Nanomembranes for Li-Ion Batteries with Long Cycle Life. ACS Nano, 2015, 9, 1198-1205.	7.3	137

#	Article	IF	CITATIONS
145	Inâ€Situâ€Formed, Amorphous, Oxygenâ€Enabled Germanium Anode with Robust Cycle Life for Reversible Lithium Storage. ChemElectroChem, 2015, 2, 737-742.	1.7	50
146	Curly MnOx nanomembranes as cathode materials for rechargeable lithium–oxygen battery systems. Journal of Power Sources, 2015, 295, 197-202.	4.0	17
147	Nanomeshes of highly crystalline nitrogen-doped carbon encapsulated Fe/Fe ₃ C electrodes as ultrafast and stable anodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 15008-15014.	5.2	51
148	A new approach towards the synthesis of nitrogen-doped graphene/MnO ₂ hybrids for ultralong cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6291-6296.	5.2	52
149	Highly Flexible Full Lithium Batteries with Self-Knitted α-MnO ₂ Fabric Foam. ACS Applied Materials & Interfaces, 2015, 7, 25298-25305.	4.0	34
150	Highâ€Performance Liâ€O ₂ Batteries with Trilayered Pd/MnO <i>_x</i> /Pd Nanomembranes. Advanced Science, 2015, 2, 1500113.	5.6	55
151	Wearable Magnetic Field Sensors for Flexible Electronics. Advanced Materials, 2015, 27, 1274-1280.	11.1	201
152	Interconnected three-dimensional V ₂ O ₅ /polypyrrole network nanostructures for high performance solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 488-493.	5.2	135
153	Stable Silicon Anodes for Lithiumâ€lon Batteries Using Mesoporous Metallurgical Silicon. Advanced Energy Materials, 2015, 5, 1401556.	10.2	68
154	High-rate amorphous SnO ₂ nanomembrane anodes for Li-ion batteries with a long cycling life. Nanoscale, 2015, 7, 282-288.	2.8	66
155	Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage. Scientific Reports, 2015, 4, 4647.	1.6	75
156	Threeâ€Dimensionally "Curved―NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Liâ€Ion Batteries with Long Cycle Lifetimes. Advanced Energy Materials, 2014, 4, 1300912.	10.2	263
157	Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries. Advanced Materials, 2014, 26, 4527-4532.	11.1	141
158	A Single Rolledâ€Up Si Tube Battery for the Study of Electrochemical Kinetics, Electrical Conductivity, and Structural Integrity. Advanced Materials, 2014, 26, 7973-7978.	11.1	45
159	Hollow micro/nanostructured materials prepared by ion exchange synthesis and their potential applications. New Journal of Chemistry, 2014, 38, 1883-1904.	1.4	24
160	Strongly Coupled Bi ₂ S ₃ @CNT Hybrids for Robust Lithium Storage. Advanced Energy Materials, 2014, 4, 1400798.	10.2	159
161	Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy, 2014, 9, 168-175.	8.2	268
162	High areal capacity, micrometer-scale amorphous Si film anode based on nanostructured Cu foil for Li-ion batteries. Journal of Power Sources, 2014, 267, 629-634.	4.0	31

#	Article	IF	CITATIONS
163	Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Scientific Reports, 2014, 4, 7452.	1.6	83
164	Highly Conductive and Strainâ€Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithiumâ€lonâ€ S torage Capability. Advanced Materials, 2013, 25, 539-544.	11.1	125
165	Sandwich-Stacked SnO ₂ /Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano, 2013, 7, 6948-6954.	7.3	99
166	On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy and Environmental Science, 2013, 6, 3218.	15.6	314
167	Strainâ€Driven Formation of Multilayer Graphene/GeO ₂ Tubular Nanostructures as High apacity and Very Longâ€Life Anodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1269-1274.	10.2	67
168	Naturally Rolledâ€Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithiumâ€Ion Batteries with Remarkable Cycling Performance. Angewandte Chemie - International Edition, 2013, 52, 2326-2330.	7.2	181
169	Threeâ€Dimensional (3D) Bicontinuous Au/Amorphousâ€Ge Thin Films as Fast and High apacity Anodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 281-285.	10.2	115
170	Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range. Nano Letters, 2012, 12, 1799-1805.	4.5	39
171	Printable Giant Magnetoresistive Devices. Advanced Materials, 2012, 24, 4518-4522.	11.1	74
172	Near-IR Photoresponse in New Up-Converting CdSe/NaYF ₄ :Yb,Er Nanoheterostructures. Journal of the American Chemical Society, 2010, 132, 8868-8869.	6.6	183
173	Multiple NaNbO ₃ /Nb ₂ O ₅ Heterostructure Nanotubes: A New Class of Ferroelectric/Semiconductor Nanomaterials. Advanced Materials, 2010, 22, 1741-1745.	11.1	104