Hong Duc Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9320444/publications.pdf Version: 2024-02-01

1.7

19

405

#	Article	IF	CITATIONS
1	Enhancing Mechanical Energy Transfer of Piezoelectric Supercapacitors. Advanced Materials Technologies, 2022, 7, 2100550.	3.0	5
2	Deep Eutectic Solvents: Green Approach for Cathode Recycling of Liâ€ I on Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100133.	2.8	47
3	Zero-waste: Carbon and SiO2 composite materials from the solid residue of the hydrothermal liquefaction of anaerobic digestion digestate for Li-ion batteries. Sustainable Materials and Technologies, 2022, 31, e00364.	1.7	3
4	Reduced graphene oxide nanofluidic electrolyte with improved electrochemical properties for vanadium flow batteries. Journal of Energy Storage, 2022, 49, 104133.	3.9	17
5	Backâ€Integration of Recovered Graphite from Wasteâ€Batteries as Ultraâ€High Capacity and Stable Anode for Potassiumâ€Ion Battery. Batteries and Supercaps, 2022, 5, .	2.4	8
6	Enhancing Mechanical Energy Transfer of Piezoelectric Supercapacitors (Adv. Mater. Technol. 4/2022). Advanced Materials Technologies, 2022, 7, .	3.0	0
7	Fluorenone and triphenylamine based donor–acceptor–donor (D–A–D) for solution-processed organic light-emitting diodes. Flexible and Printed Electronics, 2022, 7, 025009.	1.5	1
8	Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor. Energy Storage Materials, 2021, 34, 475-482.	9.5	33
9	Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochimica Acta, 2021, 389, 138717.	2.6	24
10	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	10.2	40
11	Piezo-supercapacitors: A new paradigm of self-powered wellbeing and biomedical devices. Nano Energy, 2021, 90, 106607.	8.2	16
12	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges (Adv.) Tj ETQq0 0 0 rg	BT_/Overlov 10.2	ck ₂ 10 Tf 50
13	Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cells. Organic Electronics, 2020, 77, 105524.	1.4	10
14	Small molecular material as an interfacial layer in hybrid inverted structure perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 108, 104908.	1.9	8

18True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid5.25.2

Dual Carbon Potassium-Ion Capacitors: Biomass-Derived Graphene-like Carbon Nanosheet Cathodes. ACS Applied Materials & amp; Interfaces, 2020, 12, 48518-48525.

Spent graphite from end-of-life Li-ion batteries as a potential electrode for aluminium ion battery. Sustainable Materials and Technologies, 2020, 26, e00230.

Effect of Supports and Promoters on the Performance of Niâ€Based Catalysts inÂEthanol Steam Reforming. Chemical Engineering and Technology, 2020, 43, 672-688.

16

Hong Duc Pham

#	Article	IF	CITATIONS
19	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	10.2	202
20	Allâ€Rounder Lowâ€Cost Dopantâ€Free Dâ€Aâ€D Holeâ€Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 1900884.	2.6	72
21	Organic interfacial materials for perovskite-based optoelectronic devices. Energy and Environmental Science, 2019, 12, 1177-1209.	15.6	185
22	Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material. Journal of Materials Chemistry A, 2019, 7, 12507-12517.	5.2	62
23	Application of A Novel, Non-Doped, Organic Hole-Transport Layer into Single-Walled Carbon Nanotube/Silicon Heterojunction Solar Cells. Applied Sciences (Switzerland), 2019, 9, 4721.	1.3	3
24	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	5.2	70
25	Molecular Engineering Using an Anthanthrone Dye for Lowâ€Cost Hole Transport Materials: A Strategy for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703007.	10.2	154
26	One step facile synthesis of a novel anthanthrone dye-based, dopant-free hole transporting material for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 3699-3708.	2.7	61
27	A triphenylamine substituted quinacridone derivative for solution processed organic light emitting diodes. Materials Chemistry and Physics, 2018, 206, 56-63.	2.0	15
28	Acene-based organic semiconductors for organic light-emitting diodes and perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 9017-9029.	2.7	50
29	Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. ACS Applied Materials & Interfaces, 2017, 9, 16967-16976.	4.0	56
30	Application of Hole-Transporting Materials as the Interlayer in Graphene Oxide/Single-Wall Carbon Nanotube Silicon Heterojunction Solar Cells. Australian Journal of Chemistry, 2017, 70, 1202.	0.5	7
31	Thienylvinylenethienyl and Naphthalene Core Substituted with Triphenylamines—Highly Efficient Hole Transporting Materials and Their Comparative Study for Inverted Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700105.	3.1	59
32	Lowâ€Cost Alternative Highâ€Performance Holeâ€Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIROâ€OMeTAD. Advanced Electronic Materials, 2017, 3, 1700139.	2.6	60
33	Marine brown algae: A conundrum answer for sustainable biofuels production. Renewable and Sustainable Energy Reviews, 2015, 50, 782-792.	8.2	100
34	Overview of anaerobic digestion process for biofuels production from marine macroalgae: A developmental perspective on brown algae. Korean Journal of Chemical Engineering, 2015, 32, 567-575.	1.2	38
35	Bacterial community structure in maximum volatile fatty acids production from alginate in acidogenesis. Bioresource Technology, 2014, 157, 22-27.	4.8	32
36	Maximization of volatile fatty acids production from alginate in acidogenesis. Bioresource Technology, 2013, 148, 601-604.	4.8	16

0

#	Article	IF	CITATIONS
37	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1

Conjugated 1,8-Naphthalimide Based Solution Processable n-Type Semiconductors for Organic Electronics. , 0, , .

4