Hong Duc Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9320444/publications.pdf

Version: 2024-02-01

38 papers 1,972 citations

331670 21 h-index 36 g-index

40 all docs

40 docs citations

40 times ranked

2514 citing authors

#	Article	IF	CITATIONS
1	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	10.0	405
2	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	19.5	202
3	Organic interfacial materials for perovskite-based optoelectronic devices. Energy and Environmental Science, 2019, 12, 1177-1209.	30.8	185
4	Molecular Engineering Using an Anthanthrone Dye for Lowâ€Cost Hole Transport Materials: A Strategy for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703007.	19.5	154
5	Marine brown algae: A conundrum answer for sustainable biofuels production. Renewable and Sustainable Energy Reviews, 2015, 50, 782-792.	16.4	100
6	Allâ€Rounder Lowâ€Cost Dopantâ€Free Dâ€Aâ€D Holeâ€Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 1900884.	5.1	72
7	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	10.3	70
8	Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material. Journal of Materials Chemistry A, 2019, 7, 12507-12517.	10.3	62
9	One step facile synthesis of a novel anthanthrone dye-based, dopant-free hole transporting material for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 3699-3708.	5.5	61
10	Lowâ€Cost Alternative Highâ€Performance Holeâ€Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIROâ€OMeTAD. Advanced Electronic Materials, 2017, 3, 1700139.	5.1	60
11	Thienylvinylenethienyl and Naphthalene Core Substituted with Triphenylaminesâ€"Highly Efficient Hole Transporting Materials and Their Comparative Study for Inverted Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700105.	5.8	59
12	Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16967-16976.	8.0	56
13	Acene-based organic semiconductors for organic light-emitting diodes and perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 9017-9029.	5.5	50
14	Dual Carbon Potassium-Ion Capacitors: Biomass-Derived Graphene-like Carbon Nanosheet Cathodes. ACS Applied Materials & Diterfaces, 2020, 12, 48518-48525.	8.0	47
15	Deep Eutectic Solvents: Green Approach for Cathode Recycling of Liâ€lon Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100133.	5.8	47
16	Effect of Supports and Promoters on the Performance of Niâ€Based Catalysts inÂEthanol Steam Reforming. Chemical Engineering and Technology, 2020, 43, 672-688.	1.5	40
17	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	19.5	40
18	Overview of anaerobic digestion process for biofuels production from marine macroalgae: A developmental perspective on brown algae. Korean Journal of Chemical Engineering, 2015, 32, 567-575.	2.7	38

#	Article	IF	CITATIONS
19	Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor. Energy Storage Materials, 2021, 34, 475-482.	18.0	33
20	Bacterial community structure in maximum volatile fatty acids production from alginate in acidogenesis. Bioresource Technology, 2014, 157, 22-27.	9.6	32
21	Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochimica Acta, 2021, 389, 138717.	5.2	24
22	Spent graphite from end-of-life Li-ion batteries as a potential electrode for aluminium ion battery. Sustainable Materials and Technologies, 2020, 26, e00230.	3.3	19
23	Reduced graphene oxide nanofluidic electrolyte with improved electrochemical properties for vanadium flow batteries. Journal of Energy Storage, 2022, 49, 104133.	8.1	17
24	Maximization of volatile fatty acids production from alginate in acidogenesis. Bioresource Technology, 2013, 148, 601-604.	9.6	16
25	Piezo-supercapacitors: A new paradigm of self-powered wellbeing and biomedical devices. Nano Energy, 2021, 90, 106607.	16.0	16
26	A triphenylamine substituted quinacridone derivative for solution processed organic light emitting diodes. Materials Chemistry and Physics, 2018, 206, 56-63.	4.0	15
27	Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cells. Organic Electronics, 2020, 77, 105524.	2.6	10
28	Small molecular material as an interfacial layer in hybrid inverted structure perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 108, 104908.	4.0	8
29	Backâ€Integration of Recovered Graphite from Wasteâ€Batteries as Ultraâ€High Capacity and Stable Anode for Potassiumâ€Ion Battery. Batteries and Supercaps, 2022, 5, .	4.7	8
30	Application of Hole-Transporting Materials as the Interlayer in Graphene Oxide/Single-Wall Carbon Nanotube Silicon Heterojunction Solar Cells. Australian Journal of Chemistry, 2017, 70, 1202.	0.9	7
31	Enhancing Mechanical Energy Transfer of Piezoelectric Supercapacitors. Advanced Materials Technologies, 2022, 7, 2100550.	5.8	5
32	Application of A Novel, Non-Doped, Organic Hole-Transport Layer into Single-Walled Carbon Nanotube/Silicon Heterojunction Solar Cells. Applied Sciences (Switzerland), 2019, 9, 4721.	2.5	3
33	Zero-waste: Carbon and SiO2 composite materials from the solid residue of the hydrothermal liquefaction of anaerobic digestion digestate for Li-ion batteries. Sustainable Materials and Technologies, 2022, 31, e00364.	3.3	3
34	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges (Adv.) Tj ETQq0 0 0 rg	BT ₁ Overlo	ock ₂ 10 Tf 50 1
35	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	5.8	1
36	Fluorenone and triphenylamine based donor–acceptor–donor (D–A–D) for solution-processed organic light-emitting diodes. Flexible and Printed Electronics, 2022, 7, 025009.	2.7	1

#	Article	IF	CITATIONS
37	Conjugated 1,8-Naphthalimide Based Solution Processable n-Type Semiconductors for Organic Electronics. , 0, , .		O
38	Enhancing Mechanical Energy Transfer of Piezoelectric Supercapacitors (Adv. Mater. Technol. 4/2022). Advanced Materials Technologies, 2022, 7, .	5.8	0