Chandravanu Dash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9320121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large scale all-atom molecular dynamics simulations of mutant CA tubes provide insights on cytotoxic T-lymphocyte-mediated HIV-1 restriction. Biophysical Journal, 2022, 121, 321a.	0.5	ο
2	HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cellular and Molecular Life Sciences, 2022, 79, 5.	5.4	4
3	The 26 th Scientific Conference of the Society on NeuroImmune Pharmacology: College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, June 1-3, 2022. , 2022, .		О
4	HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. , 2022, 1, .		5
5	Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Scientific Reports, 2021, 11, 1422.	3.3	12
6	Bortezomib Sustains T Cell Function by Inducing miR-155-Mediated Downregulation of SOCS1 and SHIP1. Frontiers in Immunology, 2021, 12, 607044.	4.8	16
7	The Role of Kruppelâ€like Factor 6 in Prolidase Regulation. FASEB Journal, 2021, 35, .	0.5	0
8	Phycobilins as Potent Food Bioactive Broad-Spectrum Inhibitors Against Proteases of SARS-CoV-2 and Other Coronaviruses: A Preliminary Study. Frontiers in Microbiology, 2021, 12, 645713.	3.5	23
9	Activation of proline metabolism maintains ATP levels during cocaine-induced polyADP-ribosylation. Amino Acids, 2021, 53, 1903-1915.	2.7	3
10	PROLIDASE: A Review from Discovery to its Role in Health and Disease. Frontiers in Molecular Biosciences, 2021, 8, 723003.	3.5	33
11	Human Three Prime Repair Exonuclease 1 Promotes HIV-1 Integration by Preferentially Degrading Unprocessed Viral DNA. Journal of Virology, 2021, 95, e0055521.	3.4	6
12	Therapeutic Significance of microRNA-Mediated Regulation of PARP-1 in SARS-CoV-2 Infection. Non-coding RNA, 2021, 7, 60.	2.6	12
13	Proteomics Profiling of Autologous Blood and Semen Exosomes from HIV-infected and Uninfected Individuals Reveals Compositional and Functional Variabilities. Molecular and Cellular Proteomics, 2020, 19, 78-100.	3.8	25
14	The HIV-1 capsid-binding host factor CPSF6 is post-transcriptionally regulated by the cellular microRNA miR-125b. Journal of Biological Chemistry, 2020, 295, 5081-5094.	3.4	14
15	Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Scientific Reports, 2020, 10, 11197.	3.3	29
16	A Novel Role of Prolidase in Cocaine-Mediated Breach in the Barrier of Brain Microvascular Endothelial Cells. Scientific Reports, 2019, 9, 2567.	3.3	12
17	PF74 Inhibits HIV-1 Integration by Altering the Composition of the Preintegration Complex. Journal of Virology, 2019, 93, .	3.4	39
18	Immune Control of HIV. Journal of Life Sciences (Westlake Village, Calif), 2019, 1, 4-37.	1.8	7

CHANDRAVANU DASH

#	Article	IF	CITATIONS
19	Precision HIV care: responding to old questions and meeting new challenges. Pharmacogenomics, 2018, 19, 1299-1302.	1.3	1
20	Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses, 2018, 10, 110.	3.3	61
21	Biotin-based Pulldown Assay to Validate mRNA Targets of Cellular miRNAs. Journal of Visualized Experiments, 2018, , .	0.3	18
22	Role of Porphyromonas gingivalis outer membrane vesicles in oral mucosal transmission of HIV. Scientific Reports, 2018, 8, 8812.	3.3	17
23	Effect of prolonged freezing of semen on exosome recovery and biologic activity. Scientific Reports, 2017, 7, 45034.	3.3	52
24	Measurement of In Vitro Integration Activity of HIV-1 Preintegration Complexes. Journal of Visualized Experiments, 2017, , .	0.3	8
25	Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b. ENeuro, 2017, 4, ENEURO.0089-17.2017.	1.9	24
26	Cocaine Enhances HIV-1 Transcription in Macrophages by Inducing p38 MAPK Phosphorylation. Frontiers in Microbiology, 2016, 7, 823.	3.5	19
27	Effect of oral contraceptives and doxycycline on endometrial MMP-2 and MMP-9 activity. Contraception, 2016, 93, 65-69.	1.5	6
28	Impact of cocaine abuse on HIV pathogenesis. Frontiers in Microbiology, 2015, 6, 1111.	3.5	51
29	Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients. Journal of Leukocyte Biology, 2015, 97, 779-790.	3.3	28
30	The Complex Interaction Between Methamphetamine Abuse and HIV-1 Pathogenesis. Journal of NeuroImmune Pharmacology, 2015, 10, 477-486.	4.1	41
31	Synthesis of \hat{I}^2 -triphosphotriester pronucleotides. Tetrahedron Letters, 2015, 56, 2247-2250.	1.4	1
32	A Novel Role of Proline Oxidase in HIV-1 Envelope Glycoprotein-induced Neuronal Autophagy. Journal of Biological Chemistry, 2015, 290, 25439-25451.	3.4	28
33	Methamphetamine Inhibits HIV-1 Replication in CD4+ T Cells by Modulating Anti–HIV-1 miRNA Expression. American Journal of Pathology, 2014, 184, 92-100.	3.8	30
34	Cocaine Enhances HIV-1–Induced CD4+ T-Cell Apoptosis. American Journal of Pathology, 2014, 184, 927-936.	3.8	32
35	XMRV accelerates cellular proliferation, transformational activity, and invasiveness of prostate cancer cells by downregulating p27 ^{Kip1} . Prostate, 2012, 72, 886-897.	2.3	13
36	Viral Reverse Transcriptases Show Selective High Affinity Binding to DNA-DNA Primer-Templates that Resemble the Polypurine Tract. PLoS ONE, 2012, 7, e41712.	2.5	9

CHANDRAVANU DASH

#	Article	IF	CITATIONS
37	Cocaine Enhances HIV-1 Replication in CD4+ T Cells by Down-Regulating MiR-125b. PLoS ONE, 2012, 7, e51387.	2.5	69
38	A prospective on drug abuse-associated epigenetics and HIV-1 replication. Life Sciences, 2011, 88, 995-999.	4.3	8
39	Downregulation of APOBEC3G by xenotropic murine leukemia-virus related virus (XMRV) in prostate cancer cells. Virology Journal, 2011, 8, 531.	3.4	4
40	Inhibition of multi-drug resistant HIV-1 reverse transcriptase by nucleoside Î ² -triphosphates. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3519-3522.	2.2	3
41	Synthesis and anti-HIV activities of bis-(cycloSaligenyl) pronucleotides derivatives of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Tetrahedron Letters, 2011, 52, 802-805.	1.4	9
42	Solid-phase synthesis of 5â€2-O-β,γ-methylenetriphosphate derivatives of nucleosides and evaluation of their inhibitory activity against HIV-1 reverse transcriptase. Tetrahedron Letters, 2010, 51, 3010-3013.	1.4	11
43	Synthesis of nucleoside 5′-O-α,β-methylene-β-triphosphates and evaluation of their potency towards inhibition of HIV-1 reverse transcriptase. Organic and Biomolecular Chemistry, 2010, 8, 1271.	2.8	7
44	Global Transcription in Pluripotent Embryonic Stem Cells. Cell Stem Cell, 2008, 2, 437-447.	11.1	603
45	Mutations M184V and Y115F in HIV-1 Reverse Transcriptase Discriminate against "Nucleotide-competing Reverse Transcriptase Inhibitors― Journal of Biological Chemistry, 2008, 283, 29904-29911.	3.4	43
46	Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids. Nucleic Acids Research, 2008, 36, 6363-6371.	14.5	15
47	Analysis of HIV-1 replication block due to substitutions at F61 residue of reverse transcriptase reveals additional defects involving the RNase H function. Nucleic Acids Research, 2006, 34, 2853-2863.	14.5	20
48	Examining Interactions of HIV-1 Reverse Transcriptase with Single-stranded Template Nucleotides by Nucleoside Analog Interference. Journal of Biological Chemistry, 2006, 281, 27873-27881.	3.4	13
49	Examining Ty3 Polypurine Tract Structure and Function by Nucleoside Analog Interference. Journal of Biological Chemistry, 2006, 281, 2773-2783.	3.4	11
50	Illustration of HIV-1 Protease Folding through a Molten-Globule-like Intermediate Using an Experimental Model that Implicates I±-Crystallin and Calcium Ions. Biochemistry, 2005, 44, 3725-3734.	2.5	4
51	Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract. Nucleic Acids Research, 2004, 32, 1539-1547.	14.5	65
52	Two Modes of HIV-1 Polypurine Tract Cleavage Are Affected by Introducing Locked Nucleic Acid Analogs into the (-) DNA Template. Journal of Biological Chemistry, 2004, 279, 37095-37102.	3.4	14
53	Aspartic Peptidase Inhibitors: Implications in Drug Development. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38, 89-119.	5.2	100
54	Direct Assembly of Gold Nanoparticle "Shells―on Polyurethane Microsphere "Cores―and Their Application as Enzyme Immobilization Templates. Chemistry of Materials, 2003, 15, 1944-1949.	6.7	170

CHANDRAVANU DASH

#	Article	IF	CITATIONS
55	Slow Tight Binding Inhibition of Proteinase K by a Proteinaceous Inhibitor. Journal of Biological Chemistry, 2003, 278, 48735-48744.	3.4	13
56	Slow-Tight Binding Inhibition of Xylanase by an Aspartic Protease Inhibitor. Journal of Biological Chemistry, 2002, 277, 17978-17986.	3.4	21
57	Improved Performance of Preordered Fungal Protease-Stearic Acid Biocomposites: Enhanced Catalytic Activity, Reusability, and Temporal Stability. Biotechnology Progress, 2002, 18, 700-705.	2.6	0
58	Pepsinâ~'Gold Colloid Conjugates:  Preparation, Characterization, and Enzymatic Activity. Langmuir, 2001, 17, 1674-1679.	3.5	514
59	On the Preparation, Characterization, and Enzymatic Activity of Fungal Proteaseâ^Gold Colloid Bioconjugates. Bioconjugate Chemistry, 2001, 12, 684-690.	3.6	133
60	Structural and Mechanistic Insight into the Inhibition of Aspartic Proteases by a Slow-Tight Binding Inhibitor from an ExtremophilicBacillussp.:Â Correlation of the Kinetic Parameters with the Inhibitor Induced Conformational Changesâ€. Biochemistry, 2001, 40, 11525-11532.	2.5	18
61	Interactions of a Novel Inhibitor from an ExtremophilicBacillus sp. with HIV-1 Protease. Journal of Biological Chemistry, 2001, 276, 2487-2493.	3.4	21
62	Novel Bifunctional Inhibitor of Xylanase and Aspartic Protease: Implications for Inhibition of Fungal Growth. Antimicrobial Agents and Chemotherapy, 2001, 45, 2008-2017.	3.2	27
63	Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chemical Communications, 2000, , 297-298.	4.1	59
64	Fabrication, Characterization, and Enzymatic Activity of Encapsulated Fungal Proteaseâ^'Fatty Lipid Biocomposite Films. Analytical Chemistry, 2000, 72, 4301-4309.	6.5	54