
Marie José Stasia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9319951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical, functional and genetic characterization of 16 patients suffering from chronic granulomatous disease variants–Âidentification of 11 novel mutations in CYBB. Clinical and Experimental Immunology, 2021, 203, 247-266.	2.6	14
2	Characterization of NADPH Oxidase Expression and Activity in Acute Myeloid Leukemia Cell Lines: A Correlation with the Differentiation Status. Antioxidants, 2021, 10, 498.	5.1	10
3	Second Report of Chronic Granulomatous Disease in Jordan: Clinical and Genetic Description of 31 Patients From 21 Different Families, Including Families From Lybia and Iraq. Frontiers in Immunology, 2021, 12, 639226.	4.8	12
4	Hydrogen Peroxide Affects Growth of S. aureus Through Downregulation of Genes Involved in Pyrimidine Biosynthesis. Frontiers in Immunology, 2021, 12, 673985.	4.8	10
5	Hematologically important mutations: X-linked chronic granulomatous disease (fourth update). Blood Cells, Molecules, and Diseases, 2021, 90, 102587.	1.4	22
6	Hematologically important mutations: The autosomal forms of chronic granulomatous disease (third) Tj ETQq0 (0 0 rgBT /C	verlock 10 T
7	NOX4 is the main NADPH oxidase involved in the early stages of hematopoietic differentiation from human induced pluripotent stem cells. Free Radical Biology and Medicine, 2020, 146, 107-118.	2.9	15
8	The X-CGD PLB-985 Cell Model for NOX2 Structure-Function Analysis. Methods in Molecular Biology, 2019, 1982, 153-171.	0.9	5
9	Ex Vivo Models of Chronic Granulomatous Disease. Methods in Molecular Biology, 2019, 1982, 587-622.	0.9	2
10	Genetic diagnosis of primary immunodeficiencies: AÂsurvey of the French national registry. Journal of Allergy and Clinical Immunology, 2019, 143, 1646-1649.e10.	2.9	20
11	X-linked chronic granulomatous disease in a female carrier with novel pathogenic mutation and skewed X-inactivation. Annals of Allergy, Asthma and Immunology, 2018, 120, 328-329.	1.0	3
12	Altered Humoral Immune Responses and IgG Subtypes in NOX2-Deficient Mice and Patients: A Key Role for NOX2 in Antigen-Presenting Cells. Frontiers in Immunology, 2018, 9, 1555.	4.8	18
13	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
14	Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation. Free Radical Biology and Medicine, 2017, 113, 1-15.	2.9	25
15	The NOX Family of Proteins Is Also Present in Bacteria. MBio, 2017, 8, .	4.1	45
16	Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. International Journal of Nanomedicine, 2017, Volume 12, 2161-2177.	6.7	21
17	Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC. Redox Biology, 2017, 13, 82-93.	9.0	25
18	CYBA encoding p22phox, the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene, 2016, 586, 27-35.	2.2	52

2

#	Article	IF	CITATIONS
19	RAGE and CYBA polymorphisms are associated with microalbuminuria and end-stage renal disease onset in a cohort of type 1 diabetes mellitus patients over a 20-year follow-up. Acta Diabetologica, 2016, 53, 469-475.	2.5	4
20	Genetic disorders coupled to ROS deficiency. Redox Biology, 2015, 6, 135-156.	9.0	130
21	Identification of NOX2 regions for normal biosynthesis of cytochrome <i>b</i> 558 in phagocytes highlighting essential residues for p22 <i>phox</i> binding. Biochemical Journal, 2014, 464, 425-437.	3.7	13
22	Optimized Generation of Functional Neutrophils and Macrophages from Patient-Specific Induced Pluripotent Stem Cells: <i>Ex Vivo</i> Models of X ⁰ -Linked, AR22 ⁰ - and AR47 ⁰ - Chronic Granulomatous Diseases. BioResearch Open Access, 2014, 3, 311-326.	2.6	30
23	Differential impact of glucose levels and advanced glycation end-products on tubular cell viability and pro-inflammatory/profibrotic functions. Biochemical and Biophysical Research Communications, 2014, 451, 627-631.	2.1	15
24	Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radical Biology and Medicine, 2014, 73, 400-410.	2.9	50
25	Resistant Invasive Aspergillosis in an Autosomal Recessive Chronic Granulomatous Disease. Fetal and Pediatric Pathology, 2013, 32, 241-245.	0.7	3
26	Optimization of X-linked chronic granulomatous disease modelization by using patient-specific induced pluripotent stem cells. Experimental Hematology, 2013, 41, S28.	0.4	0
27	Functional and genetic characterization of two extremely rare cases of Williams–Beuren Syndrome associated with chronic granulomatous disease. European Journal of Human Genetics, 2013, 21, 1079-1084.	2.8	17
28	Clinical, Functional and Genetic Analysis of Twenty-Four Patients with Chronic Granulomatous Disease – Identification of Eight Novel Mutations in CYBB and NCF2 Genes. Journal of Clinical Immunology, 2012, 32, 942-958.	3.8	19
29	Rare Duplication or Deletion of Exons 6, 7 and 8 in CYBB Leading to X-Linked Chronic Granulomatous Disease in Two Patients from Different Families. Journal of Clinical Immunology, 2012, 32, 653-662.	3.8	6
30	MC1R expression in HaCaT keratinocytes inhibits UVAâ€induced ROS production via NADPH Oxidase―and cAMPâ€dependent mechanisms. Journal of Cellular Physiology, 2012, 227, 2578-2585.	4.1	28
31	Characterization of superoxide overproduction by the D-LoopNox4-Nox2 cytochrome b558 in phagocytes—Differential sensitivity to calcium and phosphorylation events. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 78-90.	2.6	27
32	Role of Putative Second Transmembrane Region of Nox2 Protein in the Structural Stability and Electron Transfer of the Phagocytic NADPH Oxidase. Journal of Biological Chemistry, 2011, 286, 28357-28369.	3.4	18
33	Regulation of NADPH Oxidase Activity in Phagocytes. Journal of Biological Chemistry, 2010, 285, 33197-33208.	3.4	40
34	Towards Routine Screening of Rare Genetic Diseases. Journal of Molecular Diagnostics, 2010, 12, 269-271.	2.8	0
35	Hematologically important mutations: The autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells, Molecules, and Diseases, 2010, 44, 291-299.	1.4	143
36	Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells, Molecules, and Diseases, 2010, 45, 246-265.	1.4	179

Marie José Stasia

#	Article	IF	CITATIONS
37	Chronic Granulomatous Disease: The European Experience. PLoS ONE, 2009, 4, e5234.	2.5	567
38	Three common polymorphisms in the <i>CYBA</i> gene form a haplotype associated with decreased ROS generation. Human Mutation, 2009, 30, 1123-1133.	2.5	54
39	First Report of Clinical, Functional, and Molecular Investigation of Chronic Granulomatous Disease in Nine Jordanian Families. Journal of Clinical Immunology, 2009, 29, 215-230.	3.8	33
40	A novel point mutation in the CYBB gene promoter leading to a rare X minus chronic granulomatous disease variant — Impact on the microbicidal activity of neutrophils. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 201-210.	3.8	19
41	Genetics and immunopathology of chronic granulomatous disease. Seminars in Immunopathology, 2008, 30, 209-235.	6.1	128
42	Remarks on the article Genetics and immunopathology of chronic granulomatous disease by Marie José Stasia and Xing Jun Li. Seminars in Immunopathology, 2008, 30, 365-365.	6.1	4
43	Reply to the remarks by Joachim Roesler on the article Genetics and immunopathology of chronic granulomatous disease. Seminars in Immunopathology, 2008, 30, 367-368.	6.1	0
44	Poikiloderma with neutropenia, Clericuzio type, in a family from Morocco. American Journal of Medical Genetics, Part A, 2008, 146A, 2762-2769.	1.2	38
45	Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochromeb558during phagocytic NADPH oxidase assembly. Journal of Leukocyte Biology, 2007, 81, 238-249.	3.3	22
46	New insights into the membrane topology of the phagocyte NADPH oxidase: Characterization of an anti-gp91-phox conformational monoclonal antibody. Biochimie, 2007, 89, 1145-1158.	2.6	23
47	Potent inhibition of store-operated Ca2+influx and superoxide production in HL60 cells and polymorphonuclear neutrophils by the pyrazole derivative BTP2. Journal of Leukocyte Biology, 2007, 81, 1054-1064.	3.3	36
48	Characterization of six novel mutations in the CYBB gene leading to different sub-types of X-linked chronic granulomatous disease. Human Genetics, 2005, 116, 72-82.	3.8	32
49	Crucial Role of Two Potential Cytosolic Regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH Oxidase Activation. Journal of Biological Chemistry, 2005, 280, 14962-14973.	3.4	36
50	Functional analysis of two-amino acid substitutions in gp91phox in a patient with X-linked flavocytochrome b558-positive chronic granulomatous disease by means of transgenic PLB-985 cells. Human Genetics, 2004, 115, 418-427.	3.8	29
51	Severe Clinical Forms of Cytochromeb–Negative Chronic Granulomatous Disease (X91â^') in 3 Brothers with a Point Mutation in the Promoter Region ofCYBB. Journal of Infectious Diseases, 2003, 188, 1593-1604.	4.0	20
52	Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 316-330.	3.8	31
53	A novel and unusual case of chronic granulomatous disease in a child with a homozygous 36-bp deletion in the CYBA gene (A220) leading to the activation of a cryptic splice site in intronÂ4. Human Genetics, 2002, 110, 444-450.	3.8	22
54	An unusual case of sarcoidosis. Lancet, The, 2001, 358, 294.	13.7	8

Marie José Stasia

#	Article	IF	CITATIONS
55	Correspondence. Clinica Chimica Acta, 1998, 269, 223-225.	1.1	1
56	[36] Neutrophil chemotaxis assay and inhibition by C3 ADP-ribosyltransferase. Methods in Enzymology, 1995, 256, 327-336.	1.0	2
57	Aspartate aminotransferase macroenzyme complex in serum identified and characterized. Clinical Chemistry, 1994, 40, 1340-1343.	3.2	24
58	Aspartate aminotransferase macroenzyme complex in serum identified and characterized. Clinical Chemistry, 1994, 40, 1340-3.	3.2	6
59	The 23-kilodalton protein, a substrate of protein kinase C in bovine neutrophil cytosol is a member of the S100 family. Biochemistry, 1992, 31, 5898-5905.	2.5	30
60	Copurification of rho protein and the rho-GDP dissociation inhibitor from bovine neutrophil cytosol. Effect of phosphoinositides on rho ADP-ribosylation by the C3 exoenzyme of Clostridium botulinum. Biochemistry, 1992, 31, 12863-12869.	2.5	65
61	ADP-ribosylation of a small size GTP-binding protein in bovine neutrophils by the C3 exoenzyme of Clostridium botulinum and effect on the cell motility. Biochemical and Biophysical Research Communications, 1991, 180, 615-622.	2.1	118
62	Immunocharacterization of β- and ζ-subspecies of protein kinase C in bovine neutrophils. FEBS Letters, 1990, 274, 61-64.	2.8	24
63	Purification and characterization of an isoform of protein kinase C from bovine neutrophils. Biochemistry, 1989, 28, 424-431.	2.5	22
64	A 23-kDa protein as a substrate for protein kinase C in bovine neutrophils. Purification and partial characterization. Biochemistry, 1989, 28, 9659-9667.	2.5	11
65	Inhibition of protein kinase C from polymorphonuclear neutrophils by long chain acyl coenzyme A and counteraction by Mg-ATP. Biochemical and Biophysical Research Communications, 1987, 147, 428-436.	2.1	18
66	The respiratory burst of bovine neutrophilis. Role of a b type cytochrome and coenzyme specificity. FEBS Journal, 1985, 152, 669-679.	0.2	70