Giovanni Zangari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9319633/publications.pdf

Version: 2024-02-01

87 papers

2,372 citations

236925 25 h-index 254184 43 g-index

88 all docs 88 docs citations

88 times ranked 3355 citing authors

#	Article	IF	CITATIONS
1	Theory and Practice of Metal Electrodeposition. , 2011, , .		236
2	Photoelectrochemical Stability of Electrodeposited Cu ₂ O Films. Journal of Physical Chemistry C, 2010, 114, 11551-11556.	3.1	185
3	Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper–Indium Electrocatalysts. ACS Catalysis, 2017, 7, 5381-5390.	11.2	166
4	Electrodeposition and Characterization of Manganese Coatings. Journal of the Electrochemical Society, 2002, 149, C209.	2.9	102
5	The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Materialia, 2007, 55, 4593-4602.	7.9	94
6	Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings, 2018, 8, 260.	2.6	80
7	Electrodeposition of Alloys and Compounds in the Era of Microelectronics and Energy Conversion Technology. Coatings, 2015, 5, 195-218.	2.6	79
8	Electrodeposition of Platinum on Highly Oriented Pyrolytic Graphite. Part I:Â Electrochemical Characterization. Journal of Physical Chemistry B, 2005, 109, 7998-8007.	2.6	73
9	Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions. Journal of Physical Chemistry C, 2013, 117, 6979-6989.	3.1	72
10	Dendritic Growth and Morphology Selection in Copper Electrodeposition from Acidic Sulfate Solutions Containing Chlorides. Journal of Physical Chemistry C, 2009, 113, 10097-10102.	3.1	60
11	High Selectivity Towards Formate Production by Electrochemical Reduction of Carbon Dioxide at Copper–Bismuth Dendrites. ChemSusChem, 2019, 12, 231-239.	6.8	51
12	Electrodeposition of platinum nanoparticles on highly oriented pyrolitic graphite. Electrochimica Acta, 2006, 51, 2531-2538.	5.2	50
13	Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic, and photovoltaic devices. Electrochimica Acta, 2014, 128, 341-348.	5.2	50
14	Electrodeposition of sacrificial tin–manganese alloy coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 268-278.	5.6	48
15	Improving photo-oxidation activity of water by introducing Ti3+ in self-ordered TiO2 nanotube arrays treated with Ar/NH3. Journal of Power Sources, 2019, 414, 242-249.	7.8	47
16	Trap-state passivation of titania nanotubes by electrochemical doping for enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2015, 3, 360-367.	10.3	44
17	Laser-Induced Surface Modification at Anatase TiO ₂ Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 17121-17128.	3.1	34
18	Electrodeposition of Sm–Co nanoparticles from aqueous solutions. Journal of Magnetism and Magnetic Materials, 2004, 283, 89-94.	2.3	33

#	Article	IF	CITATIONS
19	Electrodeposition and <i>ab Initio</i> Studies of Metastable Orthorhombic Bi ₂ Se ₃ : A Novel Semiconductor with Bandgap for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 11797-11806.	3.1	32
20	Synthesis and Material Properties of Bi ₂ Se ₃ Nanostructures Deposited by SILAR. Journal of Physical Chemistry C, 2018, 122, 12052-12060.	3.1	32
21	Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of the Electrochemical Society, 2014, 161, D3066-D3077.	2.9	31
22	Electrochemical Synthesis of Vanadium Oxide Nanofibers. Journal of the Electrochemical Society, 2008, 155, E14.	2.9	29
23	The influence of morphology of electrodeposited Cu2O and Fe2O3 on the conversion efficiency of TiO2 nanotube photoelectrochemical solar cells. Electrochimica Acta, 2013, 100, 220-225.	5.2	29
24	Visible Light Sensitization of TiO ₂ Nanotubes by Bacteriochlorophyll-C Dyes for Photoelectrochemical Solar Cells. ACS Sustainable Chemistry and Engineering, 2014, 2, 2097-2101.	6.7	28
25	Capillary transfer of soft films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5210-5216.	7.1	27
26	Increased Metallic Character of Electrodeposited Mn Coatings Using Metal Ion Additives. Electrochemical and Solid-State Letters, 2004, 7, C91.	2.2	26
27	Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy. Electrochimica Acta, 2014, 121, 203-209.	5.2	26
28	Efficient water oxidation kinetics and enhanced electron transport in Li-doped TiO ₂ nanotube photoanodes. Journal of Materials Chemistry A, 2016, 4, 19070-19077.	10.3	25
29	Towards phase pure kesterite CZTS films via Cu-Zn-Sn electrodeposition followed by sulfurization. Electrochimica Acta, 2016, 219, 664-672.	5.2	24
30	Performance and Reliability of Electrowetting-on-Dielectric (EWOD) Systems Based on Tantalum Oxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42278-42286.	8.0	23
31	Molecular junctions of $\hat{a}^{1}/41$ nm device length on self-assembled monolayer modified n- vs. p-GaAs. Journal of Materials Chemistry, 2008, 18, 5459.	6.7	22
32	Underpotential Codeposition of Fe–Pt Alloys from an Alkaline Complexing Electrolyte: Electrochemical Studies. Journal of the Electrochemical Society, 2011, 158, D149.	2.9	22
33	Water splitting vs. sulfite oxidation: An assessment of photoelectrochemical performance of TiO2 nanotubes modified by CdS/CdSe nanoparticles. Electrochimica Acta, 2018, 259, 1095-1103.	5.2	21
34	Growth, morphology and crystal structure of electrodeposited Bi2Se3 films: Influence of the substrate. Electrochimica Acta, 2019, 299, 654-662.	5.2	21
35	(Photo) electrochemical water oxidation at anodic TiO2 nanotubes modified by electrodeposited NiFe oxy-hydroxides catalysts. Electrochimica Acta, 2019, 308, 91-98.	5.2	20
36	Electrodeposition and Characterization of Sacrificial Copper-Manganese Alloy Coatings. Journal of the Electrochemical Society, 2004, 151, C297.	2.9	19

#	Article	IF	Citations
37	Copper electrodeposition onto the dendrimer-modified native oxide of silicon substrates. Electrochimica Acta, 2008, 53, 2644-2649.	5.2	19
38	Electrodeposition of Ag–Ni films from thiourea complexing solutions. Electrochimica Acta, 2012, 82, 82-89.	5.2	19
39	Underpotential Co-deposition of Au–Cu Alloys: Switching the Underpotentially Deposited Element by Selective Complexation. Langmuir, 2014, 30, 2566-2570.	3.5	19
40	Tuning Electrodeposition Conditions towards the Formation of Smooth Bi ₂ Se ₃ Thin Films. Journal of the Electrochemical Society, 2017, 164, D401-D405.	2.9	19
41	Co–Pt micromagnets by electrodeposition. Journal of Applied Physics, 2002, 91, 7320.	2.5	18
42	Failure Modes during Low-Voltage Electrowetting. ACS Applied Materials & Electrowetting. ACS Applied Materials & Electrowetting. 15767-15777.	8.0	18
43	Electrodeposition and characterization of sacrificial copper-manganese alloy coatings: Part II. Structural, mechanical, and corrosion-resistance properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2705-2715.	2.2	17
44	Electrodeposition of Feâ^Pt Films with Low Oxide Content Using an Alkaline Complexing Electrolyte. ACS Applied Materials & Electrolyte. ACS Applied Materials & Electrolyte. ACS Applied Materials & Electrolyte.	8.0	17
45	Synthesis of TiO2-based nanocomposites by anodizing and hydrogen annealing for efficient photoelectrochemical water oxidation. Journal of Power Sources, 2019, 410-411, 59-68.	7.8	16
46	TiO2 Nanotubes Architectures for Solar Energy Conversion. Coatings, 2021, 11, 931.	2.6	15
47	Fe–Pt magnetic multilayers by electrochemical deposition. Electrochimica Acta, 2011, 56, 10567-10574.	5.2	13
48	Nanoscale Structuring in Au–Ni Films Grown by Electrochemical Underpotential Coâ€deposition. ChemElectroChem, 2014, 1, 787-792.	3.4	13
49	Electrodeposition of Fe–Ni alloy on Au(111) substrate: Metastable BCC growth via hydrogen evolution and interactions. Electrochimica Acta, 2020, 338, 135876.	5.2	12
50	Morphology and seebeck coefficients of electrodeposited Bi2Se3 films grown onto Au(111)/Si substrates. Electrochimica Acta, 2021, 368, 137554.	5.2	12
51	Phase transformation and magnetic hardening in electrodeposited, equiatomic Fe–Pt films. Electrochimica Acta, 2010, 55, 8100-8104.	5.2	11
52	Selection of Phase Formation in Electroplated Ag-Cu Alloys. Journal of the Electrochemical Society, 2016, 163, D40-D48.	2.9	11
53	Effect of cell configuration on the compositional homogeneity of electrodeposited Cu-Zn-Sn alloys and phase purity of the resulting Cu2ZnSnS4 absorber layers. Electrochimica Acta, 2017, 255, 347-357.	5.2	10
54	Depolarization of Cu electrodeposition in the presence of Ag: A cyclic-voltammetry study. Electrochimica Acta, 2022, 405, 139796.	5.2	10

#	Article	IF	CITATIONS
55	Magnetic properties of Co-rich Co–Pt thin films electrodeposited on a Ru underlayer. Journal of Applied Physics, 2006, 99, 08E901.	2.5	9
56	Tailoring the Wetting Properties of Surface-Modified Nanostructured Gold Films. Journal of Physical Chemistry C, 2011, 115, 17097-17101.	3.1	9
57	Three-phase contact force equilibrium of liquid drops at hydrophilic and superhydrophobic surfaces. Journal of Colloid and Interface Science, 2013, 404, 179-182.	9.4	8
58	The Induced Electrochemical Codeposition of Cu-Ge Alloy Films. Journal of the Electrochemical Society, 2017, 164, D354-D361.	2.9	8
59	Estimating electrodeposition properties and processes: Cu-Ag alloy at n-Si(001) and Ru substrates from acidic sulfate bath. Electrochimica Acta, 2022, 403, 139695.	5. 2	8
60	Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates. Coatings, 2021, 11, 1563.	2.6	8
61	Phase Separation in Electrodeposited Ag-Pd Alloy Films from Acidic Nitrate Bath. Journal of the Electrochemical Society, 2019, 166, D339-D349.	2.9	7
62	Electrodeposition of Cu-In Alloys as Precursors of Chalcopyrite Absorber Layers. Journal of the Electrochemical Society, 2014, 161, D613-D619.	2.9	6
63	Electrodeposition of Fe-Ni-Pt alloy films for heat-assisted magnetic recording media: Synthesis, structure and magnetic properties. Electrochimica Acta, 2019, 302, 92-101.	5.2	6
64	Photoelectrochemistry of Self‣imiting Electrodeposition of Ni Film onto GaAs. Small, 2020, 16, e2003112.	10.0	6
65	Magnetic Nanoparticle Arrays with Ultra-Uniform Length Electrodeposited in Highly Ordered Alumina Nanopores("Alumiteâ€). Materials Research Society Symposia Proceedings, 2000, 636, 9331.	0.1	5
66	Microstructural evolution of nickel nanoparticle catalysts supported on gadolinium-doped ceria during autothermal reforming of iso-octane. Journal of Electronic Materials, 2006, 35, 814-821.	2.2	5
67	Formation of p-type CulnS ₂ absorber layers via sulfurization of co-electrodeposited Cu–In precursors. RSC Advances, 2015, 5, 81642-81649.	3.6	5
68	Fabrication of Electrodeposited FeCuPt Nanodot Arrays Toward \$L1_{0}\$ Ordering. IEEE Transactions on Magnetics, 2018, 54, 1-7.	2.1	5
69	Electrodeposition of White Bronzes on the Way to CZTS Absorber Films. Journal of the Electrochemical Society, 2020, 167, 022513.	2.9	5
70	Photoelectrochemical oxidation performance via a protective, catalytic self-limiting Ni-Co alloys by electrodeposition. Electrochimica Acta, 2021, 382, 138305.	5.2	5
71	Metal-insulator transition in nanocomposite VO _x films formed by anodic electrodeposition. Applied Physics Letters, 2013, 103, 202102.	3.3	4
72	Underpotential Codeposition of Au-Ni Alloys: The Influence of Applied Potential on Phase Separation and Microstructure. Journal of the Electrochemical Society, 2016, 163, D3020-D3026.	2.9	4

#	Article	IF	CITATIONS
73	Electrodeposition of Ag-Pd Alloy at Ru Substrate from Simple Acidic Nitrate Bath. Journal of the Electrochemical Society, 2020, 167, 062506.	2.9	4
74	Influence of Oxygen Dopants on the HER Catalytic Activity of Electrodeposited MoO _{<i>x</i>} S _{<i>y</i>} Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 13676-13683.	5.1	4
75	Templated Electrochemical Synthesis of Fe–Pt Nanopatterns for High-Density Memory Applications. ACS Applied Nano Materials, 2018, 1, 2317-2323.	5.0	3
76	Investigations on the Electrochemical Atomic Layer Growth of Bi2Se3 and the Surface Limited Deposition of Bismuth at the Silver Electrode. Materials, 2018, 11, 1426.	2.9	3
77	Corrosion behavior of Co–Sm based magnetic media. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1203-1206.	2.1	2
78	Structure and Microstructure of Electrodeposited Metals and Alloys., 2011,, 317-333.		2
79	Electrodeposition of Alloys. , 2011, , 205-232.		2
80	Rational Compositional Control of Electrodeposited Ag–Fe films. Inorganic Chemistry, 2020, 59, 5405-5417.	4.0	2
81	The evolution of composition and morphology during the initial growth of electrodeposited Ni-Fe films: Comparison between the potentiostatic mode and the pulse-reverse potential mode. Electrochimica Acta, 2022, 409, 139978.	5.2	1
82	Thermo-Mechanical and Size-Dependent Behavior of Freestanding AuAg and Nanoporous-Au Beams. Materials Research Society Symposia Proceedings, 2006, 976, 1 .	0.1	0
83	Compressive Stress Accumulation in Composite Nanoporous Gold and Silicone Bilayer Membranes: Underlying Mechanisms and Remedies. Materials Research Society Symposia Proceedings, 2007, 1052, 1.	0.1	0
84	Structure, Magnetic Properties, and Phase Transformations in Electrodeposited Fe-Rich Fe–Pt Films. IEEE Transactions on Magnetics, 2015, 51, 1-9.	2.1	0
85	Guided Heterogeneous Nucleation of Sodium Chloride at Self-Assembled Monolayer-Modified Nanoporous Gold Films. Langmuir, 2018, 34, 2420-2424.	3 . 5	0
86	Electrical Conductivity in Electrodeposited Cu-Ge(O) Alloy Films. Journal of the Electrochemical Society, 2018, 165, D628-D634.	2.9	0
87	Photovoltaic performance of Cu2ZnSnS4 thin film solar cells on flexible molybdenum foil formed by electrodeposition and sulfurization. Journal of Materials Science: Materials in Electronics, 2022, 33, 3101.	2.2	0