
Ian S. Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9319561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 2004, 205, 115-140.	3.3	1,472
2	Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 1992, 149, 171-184.	2.1	993
3	Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions To Mineralogy and Petrology, 1987, 97, 205-217.	3.1	861
4	Pb, U and Th diffusion in natural zircon. Nature, 1997, 390, 159-162.	27.8	646
5	Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions To Mineralogy and Petrology, 2001, 140, 458-468.	3.1	587
6	Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 2008, 321, 550-554.	12.6	518
7	Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contributions To Mineralogy and Petrology, 1999, 134, 3-16.	3.1	488
8	An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia*. Journal of Metamorphic Geology, 2004, 14, 29-47.	3.4	482
9	Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature, 1983, 304, 616-618.	27.8	460
10	The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chemical Geology, 2003, 200, 171-188.	3.3	400
11	The Earth's oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta, 1992, 56, 1281-1300.	3.9	381
12	Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Research, 1991, 53, 243-266.	2.7	348
13	Considerations in Zircon Geochronology by SIMS. Reviews in Mineralogy and Geochemistry, 2003, 53, 215-241.	4.8	318
14	A search for ancient detrital zircons in Zimbabwean sediments. Journal of the Geological Society, 1988, 145, 977-983.	2.1	310
15	Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and hostâ€rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences, 2001, 48, 557-580.	1.0	307
16	Deformational Mass Transport and Invasive Processes in Soil Evolution. Science, 1992, 255, 695-702.	12.6	296
17	3.96 Ga gneisses from the Slave province, Northwest Territories, Canada. Geology, 1989, 17, 971.	4.4	287
18	Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contributions To Mineralogy and Petrology, 1986, 94, 427-437.	3.1	266

#	Article	IF	CITATIONS
19	Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 2008, 257, 114-128.	3.3	254
20	Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contributions To Mineralogy and Petrology, 1984, 88, 322-327.	3.1	243
21	The stratigraphy of the 3.5-3.2 Ga Barberton Greenstone Belt revisited: A single zircon ion microprobe study. Earth and Planetary Science Letters, 1990, 101, 90-106.	4.4	242
22	Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters, 2003, 212, 433-441.	4.4	236
23	Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Bulletin of the Geological Society of America, 2010, 122, 1660-1670.	3.3	232
24	Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. Earth and Planetary Science Letters, 1986, 76, 299-311.	4.4	207
25	Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 2001, 29, 383.	4.4	202
26	Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: Detrital record of rift-, passive-, and active-margin sedimentation. Bulletin of the Geological Society of America, 2004, 116, 1253.	3.3	198
27	The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochimica Et Cosmochimica Acta, 1994, 58, 993-1005.	3.9	196
28	Long-term cycles of Triassic climate change: a new δ180 record from conodont apatite. Earth and Planetary Science Letters, 2015, 415, 165-174.	4.4	186
29	Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China Blocks. Journal of Metamorphic Geology, 2002, 20, 873-886.	3.4	182
30	High―and Lowâ€Temperature lâ€ŧype Granites. Resource Geology, 1998, 48, 225-235.	0.8	169
31	A Positive Test of East Antarctica–Laurentia Juxtaposition Within the Rodinia Supercontinent. Science, 2008, 321, 235-240.	12.6	167
32	In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to making old crust. Geochimica Et Cosmochimica Acta, 2009, 73, 4489-4516.	3.9	166
33	The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth and Planetary Science Letters, 1986, 80, 71-81.	4.4	165
34	Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: Implications for the eastward extension of the Dabie–Sulu continental collision zone. Lithos, 2006, 92, 357-377.	1.4	158
35	Age and Provenance of the Beardmore Group, Antarctica: Constraints on Rodinia Supercontinent Breakup. Journal of Geology, 2002, 110, 393-406.	1.4	152
36	Svecofennian detrital zircon ages—implications for the Precambrian evolution of the Baltic Shield. Precambrian Research, 1993, 64, 109-130.	2.7	148

#	Article	IF	CITATIONS
37	Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Australian Journal of Earth Sciences, 1990, 37, 51-69.	1.0	147
38	The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U–Pb detrital zircon ages and Sm–Nd crustal residence (TDM) ages. Precambrian Research, 2003, 127, 287-327.	2.7	147
39	Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 1991, 353, 649-653.	27.8	143
40	Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: Uî—,Pb and Pbî—,Pb ages for igneous and metamorphic zircons from northern Sri Lanka. Precambrian Research, 1994, 66, 151-181.	2.7	139
41	Geochronology, and geochemical and Nd–Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 2009, 107, 239-256.	1.4	138
42	A SHRIMP U–Pb and LA-ICP-MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos, 2006, 88, 150-172.	1.4	136
43	A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochimica Et Cosmochimica Acta, 1991, 55, 849-859.	3.9	132
44	Early archaean zircon ages from orthogneisses and anorthosites at Mount Narryer, Western Australia. Precambrian Research, 1988, 38, 325-341.	2.7	131
45	The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 3.84 b.y. old detrital zircons. Tectonophysics, 1989, 157, 81-96.	2.2	131
46	Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83, 447-458.	0.3	130
47	Lachlan Fold Belt granites revisited: High―and lowâ€ŧemperature granites and their implications. Australian Journal of Earth Sciences, 2000, 47, 123-138.	1.0	130
48	Formation of the world's largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Scientific Reports, 2013, 3, .	3.3	130
49	Historical Development of Zircon Geochronology. Reviews in Mineralogy and Geochemistry, 2003, 53, 145-181.	4.8	128
50	The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society, 2009, 166, 53-69.	2.1	125
51	Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U–Th–Pb study. Chemical Geology, 2007, 245, 162-182.	3.3	122
52	Growth of early Archaean crust in the Ancient Gneiss Complex of Swaziland as revealed by single zircon dating. Tectonophysics, 1989, 161, 271-298.	2.2	121
53	Extreme zircon O isotopic compositions from 3.8 to 2.5 Ga magmatic rocks from the Anshan area, North China Craton. Chemical Geology, 2013, 352, 108-124.	3.3	117
54	Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica Et Cosmochimica Acta, 2009, 73, 712-728.	3.9	113

#	Article	IF	CITATIONS
55	Uraniumâ€lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteoritics and Planetary Science, 1996, 31, 370-387.	1.6	110
56	SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, 2008, 162, 475-497.	2.7	109
57	The 3.4–3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 2004, 130, 113-137.	2.7	108
58	A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Economic Geology, 1995, 90, 616-635.	3.8	106
59	Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora–Aracena metamorphic belt,) Tj E 2008, 461, 91-113.	TQq1 1 0 2.2	.784314 rg8 106
60	SHRIMP U-Pb zircon geochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Research, 1991, 52, 275-300.	2.7	105
61	U-Pb Isotopic Systematics of Zircons from Prograde and Retrograde Transition Zones in High-Grade Orthogneisses, Sri Lanka. Journal of Geology, 1991, 99, 527-545.	1.4	105
62	Impact Ejecta Horizon Within Late Precambrian Shales, Adelaide Geosyncline, South Australia. Science, 1986, 233, 198-200.	12.6	103
63	The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands. Sedimentary Geology, 1997, 109, 233-260.	2.1	98
64	Eclogites of the Snowbird tectonic zone: petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contributions To Mineralogy and Petrology, 2004, 147, 528-548.	3.1	94
65	Inherited and Magmatic Zircon from Neogene Hoyazo Cordierite Dacite, SE Spain–Anatectic Source Rock Provenance and Magmatic Evolution: In Memoriam Professor Chris Powell, dagger 2001.07.21. Journal of Petrology, 2002, 43, 1089-1104.	2.8	93
66	New conodont δ180 records of Silurian climate change: Implications for environmental and biological events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 34-48.	2.3	92
67	Granite-greenstone terranes in the Pilbara Block, Australia, as coeval volcano-plutonic complexes; Evidence from U-Pb zircon dating of the Mount Edgar Batholith. Earth and Planetary Science Letters, 1990, 97, 41-53.	4.4	90
68	Geochemistry and geochronology of the Rathjen Gneiss: Implications for the early tectonic evolution of the Delamerian Orogen. Australian Journal of Earth Sciences, 1999, 46, 377-389.	1.0	88
69	Crustal response to continental collisions between the Tibet, Indian, South China and North China Blocks: geochronological constraints from the Songpanâ€Garzê Orogenic Belt, western China. Journal of Metamorphic Geology, 2003, 21, 223-240.	3.4	88
70	Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian) Tj ETQq0 0 (22, 928-942.) rgBT /Ov 6.0	verlock 10 Tf 5 87
71	Age of the barramundi orogeny in northern Australia by means of ion microprobe and conventional U-Pb zircon studies. Precambrian Research, 1988, 40-41, 21-36.	2.7	84
72	Zircon U–Pb dating of Early Palaeozoic monzonitic intrusives from the Goonumbla area, New South	1.0	82

Zircon U–Pb dating of Early Palaeozoic monzonitic intrusives fr Wales. Australian Journal of Earth Sciences, 2001, 48, 457-464.

#	Article	lF	CITATIONS
73	Dating the lower crust by ion microprobe. Earth and Planetary Science Letters, 1987, 85, 145-161.	4.4	79
74	Precambrian zircons from the Florida basement: A Gondwanan connection. Geology, 1994, 22, 119.	4.4	77
75	Ion-probe zircon dating of a mid-Early Cambrian tuff in South Australia. Journal of the Geological Society, 1992, 149, 185-192.	2.1	76
76	Development of SHRIMP. Australian Journal of Earth Sciences, 2008, 55, 937-954.	1.0	76
77	New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: The Urra Formation (SW Iberian Massif, Portugal). Tectonophysics, 2008, 461, 114-129.	2.2	74
78	A comparison of K-Ar and Rb-Sr ages of rapidly cooled igneous rocks: two points in the Palaeozoic time scale re-evaluated. Journal of the Geological Society, 1982, 139, 557-568.	2.1	71
79	The Simpson, Strzelecki and Tirari Deserts: development and sand provenance. Sedimentary Geology, 2000, 130, 107-130.	2.1	71
80	Timing relationships between pegmatite emplacement, metamorphism and deformation during the intraâ€plate Alice Springs Orogeny, central Australia. Journal of Metamorphic Geology, 2008, 26, 915-936.	3.4	71
81	SHRIMP ionprobe dating of short-lived Proterozoic tectonic cycles in the northern Arunta Inlier, central Australia. Precambrian Research, 1995, 71, 69-89.	2.7	70
82	Testing longâ€ŧerm patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Research, 2007, 19, 335-360.	2.7	70
83	The growth of Early Proterozoic crust: new evidence from Svecofennian detrital zircons. Terra Nova, 1991, 3, 175-178.	2.1	68
84	Magma to mud to magma: Rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth and Planetary Science Letters, 2012, 319-320, 104-117.	4.4	68
85	Sensitive high-resolution ion microprobe U-Pb dating of prograde and retrograde ultrahigh-temperature metamorphism as exemplified by Sri Lankan granulites. Geology, 2010, 38, 971-974.	4.4	67
86	A Paleozoic subduction complex in Korea: SHRIMP zircon U–Pb ages and tectonic implications. Gondwana Research, 2011, 20, 890-903.	6.0	66
87	Granite genesis and basin formation in an extensional setting: The magmatic history of the Northernmost New England Orogen*. Australian Journal of Earth Sciences, 1998, 45, 875-888.	1.0	65
88	Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. Lithos, 2009, 111, 186-202.	1.4	65
89	Early carboniferous wrenching, exhumation of high-grade metamorphic rocks and basin instability in SW Iberia: Constraints derived from structural geology and U–Pb and 40Ar–39Ar geochronology. Tectonophysics, 2012, 558-559, 28-44.	2.2	64
90	A combined zircon SHRIMP and Sm–Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: evidence for northern Gondwanan and Grenvillian provenance. Journal of the Geological Society, 2001, 158, 983-994.	2.1	63

#	Article	IF	CITATIONS
91	Neoproterozoic Bimodal Volcanism in the Okcheon Belt, South Korea, and Its Comparison with the Nanhua Rift, South China: Implications for Rifting in Rodinia. Journal of Geology, 2006, 114, 717-733.	1.4	63
92	Peri-Gondwanan origin and early geodynamic history of NE Sicily: A zircon tale from the basement of the Peloritani Mountains. Gondwana Research, 2012, 22, 855-865.	6.0	63
93	Wintertime stress, nursing, and lead exposure in Neanderthal children. Science Advances, 2018, 4, eaau9483.	10.3	63
94	Complex history of a zircon aggregate from lunar breccia 73235. Geochimica Et Cosmochimica Acta, 2007, 71, 1370-1381.	3.9	62
95	REE, U, Th, and Hf distribution in zircon from Western Carpathian Variscan granitoids: A combined cathodoluminescence and ion microprobe study. Numerische Mathematik, 2001, 301, 858-876.	1.4	61
96	Timing and rate of isothermal decompression in Pan-African granulites from Rundvågshetta, East Antarctica. Journal of Metamorphic Geology, 2000, 18, 441-454.	3.4	60
97	Provenance ages for the Witwatersrand Supergroup and the Ventersdorp contact reef; constraints from ion microprobe U-Pb ages of detrital zircons. Economic Geology, 1989, 84, 2012-2019.	3.8	59
98	Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 2006, 92, 557-575.	1.4	57
99	Variscan intra-orogenic extensional tectonics in the Ossa-Morena Zone (Évora-Aracena-Lora del RıÌo) Tj ETQq1 Special Publication, 2009, 327, 215-237.	l 1 0.7843 1.3	314 rgBT / 57
100	Stabilization and reactivation of cratonic lithosphere from the lower crustal record in the western Canadian shield. Contributions To Mineralogy and Petrology, 2008, 156, 529-549.	3.1	56
101	Zircon U-Pb Chronometry of the Pressure and Temperature History of Granulites in the Musgrave Ranges, Central Australia. Journal of Geology, 1991, 99, 675-697.	1.4	55
102	Geochronological evidence for â^¼ 530–550 Ma juxtaposition of two Proterozoic metamorphic terranes in the Musgrave Ranges, Central Australia. Australian Journal of Earth Sciences, 1992, 39, 457-471.	1.0	55
103	A new method for the estimation of cooling and denudation rates using paramagnetic centers in quartz: A case study on the Eldzhurtinskiy Granite, Caucasus. Journal of Geophysical Research, 1999, 104, 17531-17549.	3.3	55
104	Tectonic cycles in the Strangways Metamorphic Complex, Arunta Inlier, central Australia: geochronological evidence for exhumation and basin formation between two high-grade metamorphic events*. Australian Journal of Earth Sciences, 2005, 52, 205-215.	1.0	55
105	Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys. Geology, 2012, 40, 515-518.	4.4	55
106	Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming Province, USA: evidence from Uî—,Pb systematics in zircon. Precambrian Research, 1996, 78, 41-52.	2.7	54
107	Post-collisional volcanism in a sinking slab setting—crustal anatectic origin of pyroxene-andesite magma, Caldear Volcanic Group, Neogene AlborA¡n volcanic province, southeastern Spain. Lithos, 1998, 45, 499-522.	1.4	53
108	Archaean fluid-assisted crustal cannibalism recorded by low δ180 and negative εHf(T) isotopic signatures of West Greenland granite zircon. Contributions To Mineralogy and Petrology, 2011, 161, 1027-1050.	3.1	53

#	Article	IF	CITATIONS
109	Crustal Contributions to Late Hercynian Peraluminous Magmatism in the Southern Calabria-Peloritani Orogen, Southern Italy: Petrogenetic Inferences and the Gondwana Connection. Journal of Petrology, 2008, 49, 1497-1514.	2.8	49
110	In situ U-Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. Journal of Metamorphic Geology, 2005, 23, 201-215.	3.4	47
111	U–Th–Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nisa-Albuquerque batholith, SW Iberian Massif: Petrologic and regional implications. Lithos, 2009, 111, 156-167.	1.4	47
112	In situ microanalysis for 34S/32S ratios using the ion microprobe SHRIMP. International Journal of Mass Spectrometry and Ion Processes, 1987, 76, 65-83.	1.8	46
113	Zircon inheritance in mafic inclusions from Bega batholith granites, southeastern Australia: An ion microprobe study. Journal of Geophysical Research, 1990, 95, 17787-17796.	3.3	46
114	Relict 1.4 Ga oceanic crust in the Zambezi Valley, northern Zimbabwe: Evidence for Mesoproterozoic supercontinental fragmentation. Geology, 1998, 26, 571.	4.4	46
115	Architecture of a 1.38–1.34 Ga granite–rhyolite complex as revealed by geochronology and isotopic and elemental geochemistry of subsurface samples from west Texas, USA. Precambrian Research, 2002, 119, 9-43.	2.7	45
116	U-Th-Pb systematics of individual perovskite grains from the Allende and Murchison carbonaceous chondrites. Earth and Planetary Science Letters, 1990, 101, 379-387.	4.4	43
117	Ordovician high-grade metamorphism of a newly recognised late Neoproterozoic terrane in the northern Harts Range,central Australia. Journal of Metamorphic Geology, 2001, 19, 373-394.	3.4	42
118	Detrital zircon provenance constraints on the evolution of the Harts Range Metamorphic Complex (central Australia): links to the Centralian Superbasin. Journal of the Geological Society, 2005, 162, 777-787.	2.1	42
119	In situ oxygen isotope micro-analysis of faunal material and human teeth using a SHRIMP II: a new tool for palaeo-ecology and archaeology. Journal of Archaeological Science, 2012, 39, 3184-3194.	2.4	42
120	Ion microprobe U-Th-Pb isotopic studies of zircons from three early Precambrian areas in the U.S.S.R Precambrian Research, 1990, 48, 203-221.	2.7	41
121	Carbon and U–Pb evidence for a Palaeoproterozoic crustal component in the Central Zone of the Limpopo Belt, South Africa. Journal of the Geological Society, 2003, 160, 601-612.	2.1	41
122	Thermal History of UHT Metamorphism in the Napier Complex, East Antarctica: Insights from Zircon, Monazite, and Garnet Ages. Journal of Geology, 2006, 114, 65-84.	1.4	40
123	The augen gneisses of the Peloritani Mountains (NE Sicily): Granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Research, 2013, 23, 782-796.	6.0	40
124	Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP; I, An example from the Rammelsberg orebody. Economic Geology, 1988, 83, 443-449.	3.8	39
125	Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contributions To Mineralogy and Petrology, 2003, 145, 691-706.	3.1	39
126	Zircon age evidence for the Late Precambrian Acraman ejecta blanket. Australian Journal of Earth Sciences, 1987, 34, 435-445.	1.0	38

#	Article	IF	CITATIONS
127	Source of the Northeastern Idaho Batholith: Isotopic Evidence for a Paleoproterozoic Terrane in the Northwestern U.S Journal of Geology, 1995, 103, 63-72.	1.4	38
128	Zircon U–Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): evidence for a palaeogeographical link between the Ossa–Morena Ediacaran basins and the West African craton. Geological Society Special Publication, 2008, 297, 385-408.	1.3	38
129	Uncoupled O and Hf isotopic systems in zircon from the contrasting granite suites of the New England Orogen, eastern Australia: Implications for studies of Phanerozoic magma genesis. Geochimica Et Cosmochimica Acta, 2014, 146, 132-149.	3.9	37
130	The multistage crystallization of zircon in calc-alkaline granitoids: U–Pb age constraints on the timing of Variscan tectonic activity in SW Iberia. International Journal of Earth Sciences, 2015, 104, 1167-1183.	1.8	37
131	Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind River Range, west-central Wyoming: conventional and ion microprobe U-Pb data. Contributions To Mineralogy and Petrology, 1989, 101, 198-206.	3.1	36
132	Hercynian Metamorphism in Nappe Core Complexes of the Alpine Betic–Rif Belt, Western Mediterranean—a SHRIMP Zircon Study. Journal of Petrology, 2001, 42, 1373-1385.	2.8	36
133	Monazite to the rescue: U–Th–Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 2014, 364, 76-92.	3.3	36
134	Dampier Ridge, Tasman Sea, as a stranded continental fragmentâ^—. Australian Journal of Earth Sciences, 1994, 41, 395-406.	1.0	35
135	Early Carboniferous (Viséan) emplacement of the collisional KÅ,odzko–ZÅ,oty Stok granitoids (Sudetes,) Tj E Sciences, 2013, 102, 1007-1027.	TQq11(1.8	0.784314 rg ^B 35
136	High grade metamorphism of sedimentary rocks during Palaeozoic rift basin formation in central Australia. Gondwana Research, 2013, 24, 865-885.	6.0	34
137	Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan. Tectonics, 1996, 15, 1292-1308.	2.8	33
138	Discussion and Reply: Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications for crustal architecture and tectonic models. Australian Journal of Earth Sciences, 1999, 46, 827-836.	1.0	33
139	Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U–Pb dating of syn-magmatic, inherited, and detrital zircon. Canadian Journal of Earth Sciences, 2009, 46, 21-39.	1.3	33
140	Ti in zircon from the Boggy Plain zoned pluton: implications for zircon petrology and Hadean tectonics. Contributions To Mineralogy and Petrology, 2011, 162, 447-461.	3.1	33
141	Fish otolith geochemistry, environmental conditions and human occupation at Lake Mungo, Australia. Quaternary Science Reviews, 2014, 88, 82-95.	3.0	33
142	Age and provenance of basement metasediments from the Kubor and Bena Bena Blocks, central Highlands, Papua New Guinea: Constraints on the tectonic evolution of the northern Australian cratonic margin. Australian Journal of Earth Sciences, 2002, 49, 565-577.	1.0	32
143	Palaeowind directions and sources of detrital material archived in the Roxolany loess section (southern Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496, 121-135.	2.3	32
144	Timescales and mechanisms of batholith construction: Constraints from zircon oxygen isotopes and geochronology of the late Variscan Serre Batholith (Calabria, southern Italy). Lithos, 2017, 277, 302-314.	1.4	31

#	Article	IF	CITATIONS
145	The age of (a tiny part of) the Australian continent. Nature, 1985, 317, 559-560.	27.8	28
146	The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization. Ore Geology Reviews, 2018, 92, 73-83.	2.7	27
147	U–Pb zircon geochronology of Silurian–Devonian granites in southeastern Australia: implications for the timing of the Benambran Orogeny and the l–S dichotomy. Australian Journal of Earth Sciences, 2011, 58, 501-516.	1.0	26
148	Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc. Lithos, 2017, 290-291, 228-252.	1.4	26
149	Fingerprinting windblown dust in south-eastern Australian soils by uranium-lead dating of detrital zircon. Soil Research, 2001, 39, 7.	1.1	26
150	The Mallee Dunefield: development and sand provenance. Journal of Arid Environments, 2001, 48, 149-170.	2.4	25
151	The emplacement of the Wuluma granite: melt generation and migration along steeply dipping extensional fractures at the close of the Late Strangways orogenic event, Arunta Block, central Australia. Precambrian Research, 1995, 72, 43-67.	2.7	24
152	A regional 1.92Ga tectonothermal episode in Ostrobothnia, Finland: Implications for models of Svecofennian accretion. Precambrian Research, 2008, 165, 15-36.	2.7	23
153	The Mushandike granite: further evidence for 3.4 Ga magmatism in the Zimbabwe craton. Geological Magazine, 2001, 138, 31-38.	1.5	22
154	SHRIMP dating of zircons from the Caledonian Xiongdian eclogite, western Dabie Mountains, China. Science Bulletin, 2001, 46, 77-79.	1.7	22
155	<i>In Situ</i> Oxygen Isotope Determination in Serpentine Minerals by Ion Microprobe: Reference Materials and Applications to Ultrahighâ€Pressure Serpentinites. Geostandards and Geoanalytical Research, 2018, 42, 459-479.	3.1	22
156	The contribution of geochronology to understanding the Paleozoic geological history of Australia. Australian Journal of Earth Sciences, 2008, 55, 821-848.	1.0	21
157	Highâ€Precision, Highâ€Accuracy Oxygen Isotope Measurements of Zircon Reference Materials with the SHRIMPâ€61. Geostandards and Geoanalytical Research, 2020, 44, 85-102.	3.1	21
158	The age of the Ormiston Pound Granite: implications for Mesoproterozoic evolution of the Arunta Inlier, central Australia. Precambrian Research, 1995, 71, 91-105.	2.7	20
159	The significance of Paleoproterozoic zircon in carbonatite dikes associated with the Bayan Obo REE-Nb-Fe deposit. Numerische Mathematik, 2008, 308, 379-397.	1.4	20
160	U–Pb and 39Ar/40Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos, 2012, 153, 72-83.	1.4	20
161	Contrasting zircon Uâ€Pb and model Smâ€Nd ages for the Archaean Logue Brook Granite. Australian Journal of Earth Sciences, 1986, 33, 193-200.	1.0	19
162	Lower-Crustal Xenoliths from Jurassic Kimberlite Diatremes, Upper Michigan (USA): Evidence for Proterozoic Orogenesis and Plume Magmatism in the Lower Crust of the Southern Superior Province. Journal of Petrology, 2013, 54, 575-608.	2.8	19

#	Article	IF	CITATIONS
163	Isotopic ages and palaeomagnetism of selected magmatic rocks from King George Island (Antarctic) Tj ETQq1 I	. 0.784314 2.1	rgBT /Overlo
164	A Hidden Alkaline and Carbonatite Province of Early Carboniferous Age in Northeast Poland: Zircon U-Pb and Pyrrhotite Re-Os Geochronology. Journal of Geology, 2013, 121, 91-104.	1.4	18
165	Trace inheritance—Clarifying the zircon O-Hf isotopic fingerprint of I-type granite sources: Implications for the restite model. Chemical Geology, 2018, 476, 456-468.	3.3	18
166	SHRIMP allanite U-Th-Pb dating of bimodal Triassic metamorphism of Neoarchean tonalitic gneisses, Daeijak Island, central Korea. Geosciences Journal, 2009, 13, 305-315.	1.2	17
167	An extension of the Svecofennian orogenic province into NE Poland: Evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses. Precambrian Research, 2009, 172, 234-254.	2.7	17
168	Provenance ages for the Witwatersrand Supergroup and the Ventersdorp contact reef; constraints from ion microprobe U-Pb ages of detrital zircons; reply. Economic Geology, 1990, 85, 1951-1952.	3.8	16
169	Ceological note: Age of Archaean volcanism and sulphide mineralization in the whim creek belt, west Pilbara. Australian Journal of Earth Sciences, 1994, 41, 175-177.	1.0	16
170	Lava trees and tree moulds as indicators of lava flow direction. Geological Magazine, 1978, 115, 69-74.	1.5	15
171	Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP; I, An example from the Rammelsberg orebody; reply. Economic Geology, 1989, 84, 453-457.	3.8	14
172	Old diamonds and the upper crust. Nature, 2007, 448, 880-881.	27.8	14
173	Applications of the SHRIMP I ion microprobe to the understanding of processes and timing of diamond formation. Economic Geology, 1995, 90, 271-280.	3.8	13
174	A Late Paleoproterozoic (1.80 Ga) subduction-related mafic igneous suite from Lomza, NE Poland. Terra Nova, 2005, 17, 442-449.	2.1	13
175	Portrait of a reference material: Zircon production in the Middledale Gabbroic Diorite, Australia, and its implications for the TEMORA standard. Chemical Geology, 2015, 402, 140-152.	3.3	12
176	SHRIMP U–Pb–Th xenotime (YPO4) geochronology: A novel approach for the correction of SIMS matrix effects. Chemical Geology, 2018, 484, 81-108.	3.3	10
177	High-temperature Retrogression of Granulite-facies Marbles from the Reynolds Range Group, Central Australia: Phase Equilibria, Isotopic Resetting and Fluid Fluxes. Journal of Petrology, 1997, 38, 877-910.	2.8	10
178	Mafic rocks from the Ryoke Belt, southwest Japan: implications for Cretaceous Ryoke/San-yo granitic magma genesis. , 2004, , .		8
179	Fish otolith microchemistry: Snapshots of lake conditions during early human occupation of Lake Mungo, Australia. Quaternary International, 2018, 463, 29-43.	1.5	8
180	Emplacement and deformation ages of the Wyangala Granite, Cowra, NSW. Australian Journal of Earth Sciences, 2014, 61, 607-618.	1.0	7

#	Article	IF	CITATIONS
181	Geochemical and zircon isotopic evidence for extensive high level crustal contamination in Miocene to mid-Pleistocene intra-plate volcanic rocks from the Tengchong field, western Yunnan, China. Lithos, 2017, 286-287, 227-240.	1.4	7
182	Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse. Scientific Reports, 2018, 8, 8482.	3.3	7
183	No zircon U–Pb evidence for a Precambrian component in the Late Eocene Yavuna trondhjemite, Fiji. Australian Journal of Earth Sciences, 2013, 60, 521-525.	1.0	6
184	Miocene UHT granulites from Seram, eastern Indonesia: a geochronological–REE study of zircon, monazite and garnet. Geological Society Special Publication, 2019, 478, 167-196.	1.3	6
185	Isotope age constraint for the Blue Dyke and Jardine Peak subvertical intrusions of King George Island, West Antarctica. Polish Polar Research, 2009, 30, 379-391.	0.9	6
186	Low- and high-temperature granites. , 2004, , .		5
187	Eu isotope measurements on single SiC grains from the Murchison meteorite: A new probe of s-process conditions in parent Asymptotic Giant Branch stars. New Astronomy Reviews, 2006, 50, 582-586.	12.8	5
188	The age and geochemistry of the Bardkish syenite, <scp>northwest</scp> Iran: Syenite formation during <scp>Neoâ€Tethyan</scp> subduction. Island Arc, 2020, 29, e12375.	1.1	5
189	Zircon U-Pb Dating of Magmatism and Mineralizing Hydrothermal Activity in the Variscan Karkonosze Massif and Its Eastern Metamorphic Cover (SW Poland). Minerals (Basel, Switzerland), 2020, 10, 787.	2.0	4
190	Zircon U-Pb ages of granitoid apophyses in the western part of the KÅ,odzko-ZÅ,oty Stok Granite Pluton (SW Poland). Geological Quarterly, 2014, , .	0.2	4
191	SHRIMP measurements of U and Pb isotopes in the Koongarra secondary ore deposit, Northern Australia Geochemical Journal, 2000, 34, 349-358.	1.0	3
192	Eu isotopic analyses of SiC grains from the Murchison Meteorite. AIP Conference Proceedings, 2006, , .	0.4	0