V Felipe Laurie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9319362/publications.pdf Version: 2024-02-01

V FELIDE LALIDIE

#	Article	IF	CITATIONS
1	Agro-industrial Waste Products as Mycotoxin Biosorbents: A Review of <i>in Vitro</i> and <i>in Vivo</i> Studies. Food Reviews International, 2023, 39, 2914-2930.	8.4	2
2	Red wine astringency: Correlations between chemical and sensory features. LWT - Food Science and Technology, 2022, 154, 112656.	5.2	13
3	Removal of Ochratoxin A from Red Wine Using Alginate-PVA-L. plantarum (APLP) Complexes: A Preliminary Study. Toxins, 2022, 14, 230.	3.4	5
4	Quinoa protein extract: An effective alternative for the fining of wine phenolics. Journal of the Science of Food and Agriculture, 2022, , .	3.5	3
5	Chemical and Physical Implications of the Use of Alternative Vessels to Oak Barrels during the Production of White Wines. Molecules, 2021, 26, 554.	3.8	9
6	Design and Optimization of a Self-Assembling Complex Based on Microencapsulated Calcium Alginate and Glutathione (CAG) Using Response Surface Methodology. Polymers, 2021, 13, 2080.	4.5	11
7	Combined effects of sulfur dioxide, glutathione and light exposure on the conservation of bottled Sauvignon blanc. Food Chemistry, 2021, 356, 129689.	8.2	8
8	Vigor thresholded NDVI is a key early risk indicator of Botrytis bunch rot in vineyards. Oeno One, 2020, 54, 279-297.	1.4	4
9	Polyaniline Based Materials as a Method to Eliminate Haloanisoles in Spirits Beverages. Industrial & Engineering Chemistry Research, 2018, 57, 8308-8318.	3.7	6
10	Polymeric substances for the removal of ochratoxin A from red wine followed by computational modeling of the complexes formed. Food Chemistry, 2018, 265, 159-164.	8.2	10
11	Multi-element analysis and differentiation of Chilean wines using mineral composition and multivariate statistics. , 2018, 45, 181-191.		5
12	Removal of fumonisin B1 and B2 from model solutions and red wine using polymeric substances. Food Chemistry, 2017, 224, 207-211.	8.2	7
13	On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines. Food Chemistry, 2017, 229, 588-596.	8.2	20
14	Changes in concentration of volatile compounds in response to defoliation of Muscat of Alexandria grapevines grown under a traditional farming system. Chilean Journal of Agricultural Research, 2017, 77, 373-381.	1.1	10
15	Chemical and Biological Properties of Phenolics in Wine: Analytical Determinations and Health Benefits. Current Organic Chemistry, 2017, 21, 357-367.	1.6	4
16	Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast. Frontiers in Microbiology, 2016, 7, 663.	3.5	57
17	New polymer for removal of wine phenolics: Poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA). Food Chemistry, 2016, 213, 554-560.	8.2	5
18	Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks. Journal of the Science of Food and Agriculture, 2015, 95, 1313-1320.	3.5	15

V Felipe Laurie

#	Article	IF	CITATIONS
19	Removal of 4-Ethylphenol and 4-Ethylguaiacol with Polyaniline-Based Compounds in Wine-Like Model Solutions and Red Wine. Molecules, 2015, 20, 14312-14325.	3.8	11
20	Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices. Food Chemistry, 2015, 168, 464-470.	8.2	28
21	The influence of selected winemaking equipment and operations on the concentration of dissolved oxygen in wines. Ciencia E Investigacion Agraria, 2014, 41, 27-28.	0.2	9
22	Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 2014, 60, 2-18.	6.2	193
23	pH-dependent nano-capturing of tartaric acid using dendrimers. Soft Matter, 2014, 10, 600-608.	2.7	8
24	Oxygen Incorporation and Dissolution During Industrial-Scale Red Wine Fermentations. Food and Bioprocess Technology, 2014, 7, 2627-2636.	4.7	21
25	Contribution of metals, sulfur-dioxide and phenolic compounds to the antioxidant capacity of Carménère wines. Journal of Food Composition and Analysis, 2014, 35, 37-43.	3.9	11
26	Chemical and Sensory Effects of Storing Sauvignon Blanc Wine in Colored Bottles under Artificial Light. Journal of Agricultural and Food Chemistry, 2014, 62, 7255-7262.	5.2	10
27	Periodic Aeration of Red Wine Compared to Microoxygenation at Production Scale. American Journal of Enology and Viticulture, 2014, 65, 254-260.	1.7	9
28	The binding of 4-ethylguaiacol with polyaniline-based materials in wines. Food Chemistry, 2014, 159, 486-492.	8.2	10
29	Investigation of Ethyl Radical Quenching by Phenolics and Thiols in Model Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 685-692.	5.2	36
30	Effect of inert gas and prefermentative treatment with polyvinylpolypyrrolidone onÂthe phenolic composition of Chilean Sauvignon blanc wines. Journal of the Science of Food and Agriculture, 2013, 93, 1928-1934.	3.5	10
31	Characterization of Selected Organic and Mineral Components of Qvevri Wines. American Journal of Enology and Viticulture, 2013, 64, 532-537.	1.7	9
32	Reactivity of 3-sulfanyl-1-hexanol and catechol-containing phenolics in vitro. Food Chemistry, 2012, 131, 1510-1516.	8.2	33
33	Tracing phenolic biosynthesis in Vitis vinifera via in situ C-13 labeling and liquid chromatography–diode-array detector–mass spectrometer/mass spectrometer detection. Analytica Chimica Acta, 2012, 747, 51-57.	5.4	23
34	Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. Food Chemistry, 2012, 131, 692-697.	8.2	45
35	Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biological Research, 2011, 44, 43-51.	3.4	27
36	Bioreduction of β-carboline imines to amines employing Saccharomyces bayanus. Tetrahedron: Asymmetry, 2010, 21, 1988-1992.	1.8	31

V Felipe Laurie

#	Article	IF	CITATIONS
37	Analysis of major metallic elements in Chilean wines by atomic absorption spectroscopy. Ciencia E Investigacion Agraria, 2010, 37, .	0.2	6
38	Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection. Analytica Chimica Acta, 2008, 626, 104-110.	5.4	61
39	Oxidation of Glycerol in the Presence of Hydrogen Peroxide and Iron in Model Solutions and Wine. Potential Effects on Wine Color. Journal of Agricultural and Food Chemistry, 2006, 54, 4668-4673.	5.2	58
40	Glyceraldehyde Bridging between Flavanols and Malvidin-3-glucoside in Model Solutions. Journal of Agricultural and Food Chemistry, 2006, 54, 9105-9111.	5.2	21
41	A Simple Method To Separate Red Wine Nonpolymeric and Polymeric Phenols by Solid-Phase Extraction. Journal of Agricultural and Food Chemistry, 2006, 54, 2839-2844.	5.2	41
42	Characterization of five Chilean agribusiness by-products and their potential use as food supplements. Emirates Journal of Food and Agriculture, 0, , 607.	1.0	0