Beata Wilenska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9319226/publications.pdf

Version: 2024-02-01

1039406 940134 22 249 9 16 citations h-index g-index papers 22 22 22 284 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Identification of unknown colorants in pre-Columbian textiles dyed with American cochineal (Dactylopius coccus Costa) using high-performance liquid chromatography and tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 855-867.	1.9	43
2	Enantioseparation of \hat{l}^2 2-amino acids on cinchona alkaloid-based zwitterionic chiral stationary phases. Structural and temperature effects. Journal of Chromatography A, 2014, 1334, 44-54.	1.8	28
3	Branched pentapeptides as potent inhibitors of the vascular endothelial growth factor 165 binding to Neuropilin-1: Design, synthesis and biological activity. European Journal of Medicinal Chemistry, 2018, 158, 453-462.	2.6	23
4	Design, synthesis and in vitro biological evaluation of a small cyclic peptide as inhibitor of vascular endothelial growth factor binding to neuropilin-1. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2843-2846.	1.0	21
5	Structure-activity relationship study of tetrapeptide inhibitors of the Vascular Endothelial Growth Factor A binding to Neuropilin-1. Peptides, 2017, 94, 25-32.	1.2	18
6	Conformational latitude – activity relationship of KPPR tetrapeptide analogues toward their ability to inhibit binding of vascular endothelial growth factor 165 to neuropilinâ€1. Journal of Peptide Science, 2017, 23, 445-454.	0.8	15
7	Original article Assessment of antioxidative activity of alkaloids from Huperzia selago and Diphasiastrum complanatum using in vitro systems. Folia Neuropathologica, 2014, 4, 394-406.	0.5	14
8	Structure-activity relationship study of a small cyclic peptide H-c[Lys-Pro-Glu]-Arg-OH: a potent inhibitor of Vascular Endothelial Growth Factor interaction with Neuropilin-1. Bioorganic and Medicinal Chemistry, 2017, 25, 597-602.	1.4	14
9	Triazolopeptides Inhibiting the Interaction between Neuropilin-1 and Vascular Endothelial Growth Factor-165. Molecules, 2019, 24, 1756.	1.7	13
10	Novel bifunctional hybrid compounds designed to enhance the effects of opioids and antagonize the pronociceptive effects of nonopioid peptides as potent analgesics in a rat model of neuropathic pain. Pain, 2021, 162, 432-445.	2.0	9
11	Huperzine A and Huperzine B Production by Prothallus Cultures of Huperzia selago (L.) Bernh. ex Schrank et Mart. Molecules, 2020, 25, 3262.	1.7	8
12	Reactions of nitrophenide and halonitrophenide ions with acrylonitrile and alkyl acrylates in the gas phase: addition to the carbonyl group <i>versus</i> Michael addition. Journal of Mass Spectrometry, 2012, 47, 425-438.	0.7	7
13	HPLC-PDA-ESI-HRMS-Based Profiling of Secondary Metabolites of Rindera graeca Anatomical and Hairy Roots Treated with Drought and Cold Stress. Cells, 2022, 11, 931.	1.8	7
14	Addition–elimination <i>versus</i> Tishchenko reaction in the gas phase. Journal of Mass Spectrometry, 2014, 49, 1247-1253.	0.7	5
15	Microwave-assisted guanidinylation in solid phase peptide synthesis: comparison of various reagents. Tetrahedron Letters, 2014, 55, 6198-6203.	0.7	5
16	Enkephalin degradation in serum of patients with inflammatory bowel diseases. Pharmacological Reports, 2019, 71, 42-47.	1.5	5
17	Bifunctional Opioid/Melanocortin Peptidomimetics for Use in Neuropathic Pain: Variation in the Type and Length of the Linker Connecting the Two Pharmacophores. International Journal of Molecular Sciences, 2022, 23, 674.	1.8	5
18	Imaging and identification of endogenous peptides from rat pituitary embedded in egg yolk. Rapid Communications in Mass Spectrometry, 2015, 29, 327-335.	0.7	4

#	Article	IF	CITATIONS
19	Polyscias filicifolia (Araliaceae) Hairy Roots with Antigenotoxic and Anti-Photogenotoxic Activity. Molecules, 2022, 27, 186.	1.7	3
20	Synthesis of rigid tryptophan mimetics by the diastereoselective Pictet-Spengler reaction of $\langle i \rangle^2 < i > \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < \sin 3 < i > Toronto T$	0.8	2
21	Electron Ionization and Electrospray Mass Spectra of Diaryl-Substituted Enaminoketones and Their Thio Analogs. European Journal of Mass Spectrometry, 2011, 17, 237-243.	0.5	0
22	Reactions of Stabilized Aliphatic Carbanions with Esters of Formic Acid in the Gas Phase. European Journal of Mass Spectrometry, 2015, 21, 533-543.	0.5	0