Yu-Sheng Christopher Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Coexistence Approach—Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410, 58-73.	2.3	220
2	Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 318-327.	2.3	150
3	Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 328-336.	2.3	144
4	Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276, 80-86.	2.3	116
5	Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366, 302-311.	2.3	99
6	Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: Evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358-360, 19-26.	2.3	86
7	Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Science Reviews, 2014, 139, 213-230.	9.1	80
8	Validation of temperature–precipitation based aridity index: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386, 86-95.	2.3	79
9	PALEOGENE EVOLUTION OF PRECIPITATION IN NORTHEASTERN CHINA SUPPORTING THE MIDDLE EOCENE INTENSIFICATION OF THE EAST ASIAN MONSOON. Palaios, 2011, 26, 743-753.	1.3	77
10	FossilCathaya(Pinaceae) Pollen from the Canadian High Arctic. International Journal of Plant Sciences, 2000, 161, 829-847.	1.3	67
11	Discriminating fossil evergreen and deciduous Quercus pollen: A case study from the Miocene of eastern China. Review of Palaeobotany and Palynology, 2007, 145, 289-303.	1.5	67
12	The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 308-317.	2.3	66
13	Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314, 150-161.	2.3	66
14	Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnology for Biofuels, 2015, 8, 117.	6.2	61
15	Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past, 2013, 9, 1911-1920.	3.4	56
16	LEAF MARGIN ANALYSIS: A NEW EQUATION FROM HUMID TO MESIC FORESTS IN CHINA. Palaios, 2010, 25, 234-238.	1.3	52
17	The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China. Quaternary Research, 2013, 80, 316-325.	1.7	46
18	Vitis seeds (Vitaceae) from the late Neogene Gray Fossil Site, northeastern Tennessee, U.S.A Review of Palaeobotany and Palynology, 2010, 162, 71-83.	1.5	40

#	Article	IF	CITATIONS
19	A new Drynaria (Polypodiaceae) from the Upper Pliocene of Southwest China. Review of Palaeobotany and Palynology, 2011, 164, 132-142.	1.5	36
20	First Oligocene mummified plant Lagerstäte at the low latitudes of East Asia. Science China Earth Sciences, 2016, 59, 445-448.	5.2	36
21	Miocene shift of European atmospheric circulation from trade wind to westerlies. Scientific Reports, 2014, 4, 5660.	3.3	34
22	Sinomenium macrocarpum sp. nov. (Menispermaceae) from the Miocene–Pliocene transition of Gray, northeast Tennessee, USA. Review of Palaeobotany and Palynology, 2010, 159, 112-122.	1.5	33
23	Pinus prekesiya sp. nov. from the upper Miocene of Yunnan, southwestern China and its biogeographical implications. Review of Palaeobotany and Palynology, 2010, 160, 1-9.	1.5	33
24	A new Quercus species from the upper Miocene of southwestern China and its ecological significance. Review of Palaeobotany and Palynology, 2013, 193, 99-109.	1.5	31
25	Resilience of plant-insect interactions in an oak lineage through Quaternary climate change. Paleobiology, 2015, 41, 174-186.	2.0	30
26	Tertiary <i>Ginkgo</i> Ovulate Organs with Associated Leaves from North Dakota, U.S.A., and Their Evolutionary Significance. International Journal of Plant Sciences, 2012, 173, 67-80.	1.3	27
27	Lagerstroemia (Lythraceae) pollen from the Miocene of eastern China. Grana, 2008, 47, 262-271.	0.8	26
28	A new species of Exbucklandia (Hamamelidaceae) from the Pliocene of China and its paleoclimatic significance. Review of Palaeobotany and Palynology, 2009, 155, 32-41.	1.5	25
29	Late Cenozoic pollen concentration in the western Qaidam Basin, northern Tibetan Plateau, and its significance for paleoclimate and tectonics. Review of Palaeobotany and Palynology, 2016, 231, 14-22.	1.5	25
30	Cenozoic Environmental Changes in the Northern Qaidam Basin Inferred from <i>n</i> -alkane Records. Acta Geologica Sinica, 2014, 88, 1547-1555.	1.4	24
31	Fokienia shengxianensis sp. nov. (Cupressaceae) from the late Miocene of eastern China and its paleoecological implications. Review of Palaeobotany and Palynology, 2012, 176-177, 24-34.	1.5	23
32	Late Pliocene temperatures and their spatial variation at the southeastern border of the Qinghai–Tibet Plateau. Journal of Asian Earth Sciences, 2015, 111, 44-53.	2.3	22
33	Palynology of Neogene sediments at the Gray Fossil Site, Tennessee, USA: Floristic implications. Review of Palaeobotany and Palynology, 2012, 184, 36-48.	1.5	20
34	Evidence of white pine (Pinus subgenus Strobus) dominance from the Pliocene Northeastern Gulf of Mexico Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 287, 95-100.	2.3	19
35	Outâ€ofâ€India dispersal of <i>Paliurus</i> (Rhamnaceae) indicated by combined molecular phylogenetic and fossil evidence. Taxon, 2017, 66, 78-90	0.7	17
36	New fossil endocarps of Sambucus (Adoxaceae) from the upper Pliocene in SW China. Review of Palaeobotany and Palynology, 2012, 171, 152-163.	1.5	16

#	Article	IF	CITATIONS
37	A new Tsuga species from the upper Miocene of Yunnan, southwestern China and its palaeogeographic significance. Palaeoworld, 2013, 22, 159-167.	1.1	16
38	Continental climate gradients in North America and Western Eurasia before and after the closure of the Central American Seaway. Earth and Planetary Science Letters, 2017, 472, 120-130.	4.4	16
39	Cycas fushunensis sp. nov. (Cycadaceae) from the Eocene of northeast China. Review of Palaeobotany and Palynology, 2014, 204, 43-49.	1.5	15
40	New fossil fruits of <i>Carya</i> (Juglandaceae) from the latest Miocene to earliest Pliocene in Tennessee, eastern United States. Journal of Systematics and Evolution, 2014, 52, 508-520.	3.1	14
41	In vitroinhibition of glutathione S-transferases by several insecticides and allelochemicals in two moth species. International Journal of Pest Management, 2014, 60, 33-38.	1.8	14
42	First fossil record of Staphylea L. (Staphyleaceae) from North America, and its biogeographic implications. Plant Systematics and Evolution, 2015, 301, 2203-2218.	0.9	14
43	Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeobiodiversity and Palaeoenvironments, 2009, 89, 203-209.	1.5	13
44	Floristic implications of two contemporaneous inland upper Neogene sites in the eastern US: Pipe Creek Sinkhole, Indiana, and the Gray Fossil Site, Tennessee (USA). Palaeobiodiversity and Palaeoenvironments, 2016, 96, 239-254.	1.5	11
45	A simple and convenient determination of perylene preserved in the Late Neogene wood from northeastern Tennessee using fluorescence spectroscopy. Organic Geochemistry, 2008, 39, 1462-1465.	1.8	10
46	Response of Wheat Germplasm to Infestation of English Grain Aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 2013, 106, 1473-1478.	1.8	10
47	First discovery of Cucubalus (Caryophyllaceae) fossil, and its biogeographical and ecological implications. Review of Palaeobotany and Palynology, 2013, 190, 41-47.	1.5	9
48	Late Pliocene Smilax (Smilacaceae) leaves from Southwest China: Phytogeographical and paleoecological implications. Review of Palaeobotany and Palynology, 2017, 241, 26-38.	1.5	9
49	Metasequoia Hu et Cheng (Cupressaceae) from the Eocene of Axel Heiberg Island, Canadian High Arctic. Palaeontographica Abteilung B: Palaeophytologie, 2009, 282, 69-97.	1.6	8
50	Late Cenozoic climates of low-latitude East Asia: A paleobotanical example from the Baise Basin of Guangxi, southern China. Palaeoworld, 2017, 26, 572-580.	1.1	7
51	Revised taxonomy of selected fossil endocarp species in the Menispermaceae using a morphometric approach. Geodiversitas, 2011, 33, 177-197.	0.8	6
52	Rubus (Rosaceae) diversity in the late Pliocene of Yunnan, southwestern China. Geobios, 2015, 48, 439-448.	1.4	6
53	Regional constraints on leaf physiognomy and precipitation regression models: a case study from China. Bulletin of Geosciences, 2013, , 595-608.	1.1	5
54	Oligocene plant ecological strategies in low-latitude Asia unraveled by leaf economics. Journal of Asian Earth Sciences, 2019, 182, 103933.	2.3	3

#	Article	IF	CITATIONS
55	Late Oligocene Fissistigma (Annonaceae) leaves from Guangxi, low-latitude China and its paleoecological implications. Review of Palaeobotany and Palynology, 2018, 259, 39-47.	1.5	2
56	The early history of Annonaceae (Magnoliales) in Southeast Asia suggests floristic exchange between India and Panâ€Indochina by the late Oligocene. Papers in Palaeontology, 2019, 5, 601-612.	1.5	2
57	Neogene oak diversity of southeast United States: pollen evidence from the Gray Fossil Site. Grana, 2020, 59, 19-24.	0.8	2