
Michael W Hornung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 2010, 29, 730-741.	4.3	2,072
2	Effects of the androgenic growth promoter 17â€Î²â€ŧrenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environmental Toxicology and Chemistry, 2003, 22, 1350-1360.	4.3	352
3	Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with <i>in Vitro</i> Testing and Adverse Outcome Pathway Approaches. Environmental Health Perspectives, 2019, 127, 95001.	6.0	106
4	Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicological Sciences, 2016, 151, 160-180.	3.1	95
5	Mechanistic basis for estrogenic effects in fathead minnow (Pimephales promelas) following exposure to the androgen 17α-methyltestosterone: conversion of 17α-methyltestosterone to 17α-methylestradiol. Aquatic Toxicology, 2004, 66, 15-23.	4.0	90
6	Development of a Thyroperoxidase Inhibition Assay for High-Throughput Screening. Chemical Research in Toxicology, 2014, 27, 387-399.	3.3	70
7	<i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Determination of Thyroid Hormone Modulating Activity of Benzothiazoles. Toxicological Sciences, 2015, 146, 254-264.	3.1	59
8	Early temporal effects of three thyroid hormone synthesis inhibitors in Xenopus laevis. Aquatic Toxicology, 2010, 98, 44-50.	4.0	47
9	Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for Inhibitors of Iodothyronine Deiodinases. Toxicological Sciences, 2019, 168, 430-442.	3.1	46
10	Screening the ToxCast Phase 1 Chemical Library for Inhibition of Deiodinase Type 1 Activity. Toxicological Sciences, 2018, 162, 570-581.	3.1	41
11	Tissue Distribution and Metabolism of Benzo[a]pyrene in Embryonic and Larval Medaka (Oryzias) Tj ETQq1 1 0.	784314 rg 3.1	BT /Overlock
12	Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat. Toxicology, 2013, 312, 97-107.	4.2	37
13	Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole. Aquatic Toxicology, 2013, 126, 128-136.	4.0	36
14	Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. Environmental Toxicology and Chemistry, 2016, 35, 2806-2816.	4.3	33
15	Inhibition of Thyroid Hormone Release from Cultured Amphibian Thyroid Glands by Methimazole, 6-Propylthiouracil, and Perchlorate. Toxicological Sciences, 2010, 118, 42-51.	3.1	25
16	In vitro screening for chemical inhibition of the iodide recycling enzyme, iodotyrosine deiodinase. Toxicology in Vitro, 2021, 71, 105073.	2.4	20
17	Use of multi-photon laser-scanning microscopy to describe the distribution of xenobiotic chemicals in fish early life stages. Aquatic Toxicology, 2004, 67, 1-11.	4.0	19
18	Targeted Pathway-based <i>In Vivo</i> Testing Using Thyroperoxidase Inhibition to Evaluate Plasma Thyroxine as a Surrogate Metric of Metamorphic Success in Model Amphibian <i>Xenopus laevis</i> . Toxicological Sciences, 2020, 175, 236-250.	3.1	13

#	Article	IF	CITATIONS
19	EFFECTS OF THE ANDROGENIC GROWTH PROMOTER 17-Î ² -TRENBOLONE ON FECUNDITY AND REPRODUCTIVE ENDOCRINOLOGY OF THE FATHEAD MINNOW. Environmental Toxicology and Chemistry, 2003, 22, 1350.	4.3	13
20	Induction of an estrogenâ€responsive reporter gene in rainbow trout hepatoma cells (RTH 149) at 11 or 18°C. Environmental Toxicology and Chemistry, 2003, 22, 866-871.	4.3	12
21	Evaluating Iodide Recycling Inhibition as a Novel Molecular Initiating Event for Thyroid Axis Disruption in Amphibians. Toxicological Sciences, 2018, 166, 318-331.	3.1	12
22	Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals. Toxicology in Vitro, 2021, 73, 105141.	2.4	11
23	Avoiding False Positives and Optimizing Identification of True Negatives in Estrogen Receptor Binding and Agonist/Antagonist Assays. Applied in Vitro Toxicology, 2017, 3, 163-181.	1.1	8
24	Metabolism of cyclic phenones in rainbow trout in vitro assays. Xenobiotica, 2020, 50, 115-131.	1.1	7
25	Characterization of the Mechanistic Linkages Between Iodothyronine Deiodinase Inhibition and Impaired Thyroid-Mediated Growth and Development in <i>Xenopus laevis</i> Using Iopanoic Acid. Toxicological Sciences, 2022, 187, 139-149.	3.1	5
26	Phenone, Hydroxybenzophenone, and Branched Phenone Estrogen Receptor Binding and Vitellogenin Agonism in Rainbow Trout In Vitro Models. Applied in Vitro Toxicology, 2019, 5, 62-74.	1.1	4
27	Cross-species comparison of chemical inhibition of human and Xenopus iodotyrosine deiodinase. Aquatic Toxicology, 2022, 249, 106227.	4.0	4
28	Induction of an estrogen-responsive reporter gene in rainbow trout hepatoma cells (RTH 149) at 11 or 18 degrees C. Environmental Toxicology and Chemistry, 2003, 22, 866-71.	4.3	0