
S M Ashekuzzaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An examination of maximum legal application rates of dairy processing and associated STRUBIAS fertilising products in agriculture. Journal of Environmental Management, 2022, 301, 113880.	3.8	9
2	The Impact of Bio-Based Fertilizer Integration Into Conventional Grassland Fertilization Programmes on Soil Bacterial, Fungal, and Nematode Communities. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	2
3	Grassland Phosphorus and Nitrogen Fertiliser Replacement value of Dairy Processing Dewatered Sludge. Sustainable Production and Consumption, 2021, 25, 363-373.	5.7	25
4	Differing Phosphorus Crop Availability of Aluminium and Calcium Precipitated Dairy Processing Sludge Potential Recycled Alternatives to Mineral Phosphorus Fertiliser. Agronomy, 2021, 11, 427.	1.3	14
5	Dairy processing sludge and co-products: A review of present and future re-use pathways in agriculture. Journal of Cleaner Production, 2021, 314, 128035.	4.6	44
6	Systematic Review of Dairy Processing Sludge and Secondary STRUBIAS Products Used in Agriculture. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	10
7	Novel Use of Dairy Processing Sludge Derived Pyrogenic Char (DPS-PC) to Remove Phosphorus in Discharge Effluents. Waste and Biomass Valorization, 2020, 11, 1453-1465.	1.8	10
8	Landspreading with co-digested cattle slurry, with or without pasteurisation, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry. Science of the Total Environment, 2020, 744, 140841.	3.9	12
9	Potential loss of nutrients, carbon and metals in simulated runoff associated with dairy processing sludge application. International Journal of Environmental Science and Technology, 2020, 17, 3955-3968.	1.8	7
10	Characterisation of dairy processing sludge using energy dispersive X-ray fluorescence spectroscopy. Chemical Engineering Research and Design, 2019, 127, 206-210.	2.7	8
11	Dairy industry derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. Journal of Cleaner Production, 2019, 230, 1266-1275.	4.6	70
12	Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	5
13	Strategic phosphate removal/recovery by a re-usable Mg–Fe–Cl layered double hydroxide. Chemical Engineering Research and Design, 2017, 107, 454-462.	2.7	52
14	Heavy Metals Accumulation in Coastal Sediments. , 2016, , 21-42.		32
15	Removal of Arsenic (<scp>III</scp>) from groundwater applying a reusable Mgâ€Feâ€Cl layered double hydroxide. Journal of Chemical Technology and Biotechnology, 2015, 90, 1160-1166.	1.6	39
16	Preparation and evaluation of layered double hydroxides (LDHs) for phosphate removal. Desalination and Water Treatment, 2015, 55, 836-843.	1.0	9
17	Study on the sorption–desorption–regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Engineering Journal, 2014, 246, 97-105.	6.6	90
18	Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh. International Journal of Environmental Research and Public Health. 2013, 10, 18-46.	1.2	95

#	Article	IF	CITATIONS
19	Development of novel inorganic adsorbent for water treatment. Current Opinion in Chemical Engineering, 2012, 1, 191-199.	3.8	58
20	Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures. Bioresource Technology, 2011, 102, 2213-2218.	4.8	84
21	Use of Ca- and Mg-type layered double hydroxide adsorbent to reduce phosphate concentration in secondary effluent of domestic wastewater treatment plant. , 0, 127, 64-70.		5