David M Straus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-dimensional turbulence properties of the ECMWF reanalyses. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 51, 749.	1.7	20
2	Intermediate time error growth and predictability: tropics versus mid-latitudes. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 61, 579.	1.7	16
3	Preferred intra-seasonal circulation patterns of the Indian summer monsoon and active-break cycles. Climate Dynamics, 2022, 59, 1415-1434.	3.8	2
4	Indian Monsoon Teleconnections and the Impact of Correcting Tropical Diabatic Heating. Journals of the Atmospheric Sciences, 2022, , .	1.7	2
5	A modelling framework for a better understanding of the tropically-forced component of the Indian monsoon variability. Journal of Earth System Science, 2021, 130, 1.	1.3	4
6	The Influence of South Pacific Convergence Zone Heating on the South Pacific Subtropical Anticyclone. Journal of Climate, 2021, 34, 3787-3798.	3.2	12
7	The Role of Tropical Heating and Internal Variability in the California Response to the 2015/16 ENSO Event. Journals of the Atmospheric Sciences, 2019, 76, 3115-3128.	1.7	10
8	The Impact of Cloud Representation on the Sub-Seasonal Forecasts of Atmospheric Teleconnections and Preferred Circulation Regimes in the Northern Hemisphere. Atmosphere - Ocean, 2019, 57, 233-248.	1.6	5
9	The Cape Town "Day Zero―drought and Hadley cell expansion. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	61
10	The Euro-Atlantic Circulation Response to the Madden-Julian Oscillation Cycle of Tropical Heating: Coupled GCM Intervention Experiments. Atmosphere - Ocean, 2019, 57, 161-181.	1.6	6
11	Control of Storminess over the Pacific and North America by Circulation Regimes. Climate Dynamics, 2019, 52, 4749-4770.	3.8	19
12	Seasonal prediction skill and predictability of the Northern Hemisphere storm track variability in Project Minerva. Climate Dynamics, 2019, 52, 6427-6440.	3.8	5
13	Tropical-Extratropical Interactions and Teleconnections. , 2019, , 143-164.		6
14	Resolution Dependence and Rossby Wave Modulation of Atmospheric Rivers in an Aquaplanet Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6297-6311.	3.3	12
15	Lowâ€frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Reviews of Geophysics, 2017, 55, 199-234.	23.0	105
16	Circulation Response to Fast and Slow MJO Episodes. Monthly Weather Review, 2017, 145, 1577-1596.	1.4	44
17	Rossby Wave Breaking and Transient Eddy Forcing during Euro-Atlantic Circulation Regimes. Journals of the Atmospheric Sciences, 2017, 74, 1735-1755.	1.7	13
18	Review of Tropicalâ€Extratropical Teleconnections on Intraseasonal Time Scales. Reviews of Geophysics, 2017, 55, 902-937.	23.0	227

DAVID M STRAUS

#	Article	IF	CITATIONS
19	Atmospheric Regimes: The Link between Weather and the Large-Scale Circulation. , 2016, , 105-135.		12
20	The MJO Cycle Forcing of the North Atlantic Circulation: Intervention Experiments with the Community Earth System Model. Journals of the Atmospheric Sciences, 2015, 72, 660-681.	1.7	17
21	Transient Tropical Diabatic Heating and the Seasonal-Mean Response to ENSO. Journals of the Atmospheric Sciences, 2015, 72, 1891-1907.	1.7	2
22	Tropical Stationary Wave Response to ENSO: Diabatic Heating Influence on the Indian Summer Monsoon. Journals of the Atmospheric Sciences, 2013, 70, 193-222.	1.7	12
23	Model Estimates of Land-Driven Predictability in a Changing Climate from CCSM4. Journal of Climate, 2013, 26, 8495-8512.	3.2	28
24	The Impact of Land Surface and Atmospheric Initialization on Seasonal Forecasts with CCSM. Journal of Climate, 2012, 25, 1007-1021.	3.2	34
25	The Indian Monsoon Circulation Response to El Niño Diabatic Heating. Journal of Climate, 2012, 25, 7487-7508.	3.2	12
26	Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dynamics, 2012, 39, 313-327.	3.8	89
27	Planetary-scale variability in the northern winter and the impact of land–sea thermal contrast. Climate Dynamics, 2011, 37, 151-170.	3.8	28
28	How weather impacts the forced climate response. Climate Dynamics, 2011, 37, 2389-2416.	3.8	18
29	Synoptic-Eddy Feedbacks and Circulation Regime Analysis. Monthly Weather Review, 2010, 138, 4026-4034.	1.4	19
30	Teleconnections in the Atmosphere and Oceans. Bulletin of the American Meteorological Society, 2010, 91, 381-383.	3.3	10
31	An oceanâ€atmosphere climate simulation with an embedded cloud resolving model. Geophysical Research Letters, 2010, 37, .	4.0	97
32	Is Blocking a Circulation Regime?. Monthly Weather Review, 2007, 135, 2406-2413.	1.4	16
33	Circulation Regimes: Chaotic Variability versus SST-Forced Predictability. Journal of Climate, 2007, 20, 2251-2272.	3.2	95
34	Circulation Regimes and SST Forcing: Results from Large GCM Ensembles. Journal of Climate, 2004, 17, 1641-1656.	3.2	45
35	AO, COWL, and Observed Climate Trends. Journal of Climate, 2004, 17, 2139-2156.	3.2	43
36	Predictability of the Seasonal Mean Atmospheric Circulation during Autumn, Winter, and Spring. Journal of Climate, 2003, 16, 3629-3649.	3.2	20

DAVID M STRAUS

#	Article	IF	CITATIONS
37	Statistical–Dynamical Seasonal Prediction Based on Principal Component Regression of GCM Ensemble Integrations. Monthly Weather Review, 2002, 130, 2167-2187.	1.4	32
38	Does ENSO Force the PNA?. Journal of Climate, 2002, 15, 2340-2358.	3.2	207
39	Impact of Tropical Subseasonal SST Variability on Seasonal Mean Climate Simulations. Monthly Weather Review, 2001, 129, 853-868.	1.4	22
40	Planetary-Scale Baroclinic Instability and the MJO. Journals of the Atmospheric Sciences, 2000, 57, 3609-3626.	1.7	37
41	Distinguishing between the SST-forced variability and internal variability in mid latitudes: Analysis of observations and GCM simulations. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2323-2350.	2.7	52
42	Interactions of Synoptic and Planetary Waves: Scale-Dependent Forcing of a GCM. Monthly Weather Review, 1998, 126, 876-894.	1.4	3
43	Vertical Structure and Dominant Horizontal Scales of Baroclinic Waves in the NASA DAO and NCEP Reanalyses. Monthly Weather Review, 1997, 125, 3266-3278.	1.4	1
44	Variations of Midlatitude Transient Dynamics Associated with ENSO. Journals of the Atmospheric Sciences, 1997, 54, 777-790.	1.7	100
45	A Pilot Reanalysis Project at COLA. Bulletin of the American Meteorological Society, 1995, 76, 697-710.	3.3	6
46	An Evaluation of the Structure of Tropical Intraseasonal Oscillations in Three General Circulation Models. Journal of the Meteorological Society of Japan, 1990, 68, 403-417.	1.8	34
47	Baroclinic Instability and Wave-Wave Interactions in Quasi-geostrophic Error Growth. Journals of the Atmospheric Sciences, 1989, 46, 2380-2403.	1.7	3
48	A comparison of a GCM simulation of the seasonal cycle of the atmosphere with observations part I: Mean fields and the annual harmonic. Atmosphere - Ocean, 1988, 26, 541-574.	1.6	2
49	A comparison of a GCM simulation of the seasonal cycle of the atmosphere with observations part II: Stationary waves and transient fluctuations. Atmosphere - Ocean, 1988, 26, 575-607.	1.6	6
50	An Observational Study of Large-Scale Atmospheric Rossby Waves during FGGE. Journals of the Atmospheric Sciences, 1984, 41, 1320-1335.	1.7	47
51	Conservation laws of wave action and potential enstrophy for rossby waves in a stratified atmosphere. Pure and Applied Geophysics, 1983, 121, 917-946.	1.9	3
52	On the Role of the Seasonal Cycle. Journals of the Atmospheric Sciences, 1983, 40, 303-313.	1.7	26
53	A Stochastic-Dynamical Approach to the Study of the Natural Variability of the Climate. Monthly Weather Review, 1981, 109, 407-421.	1.4	8
54	Form-Drag Instability, Multiple Equilibria and Propagating Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. Journals of the Atmospheric Sciences, 1980, 37, 1157-1176.	1.7	164

DAVID M STRAUS

#	Article	IF	CITATIONS
55	Phase separation of metallic hydrogen-helium alloys. Physical Review B, 1977, 15, 1914-1928.	3.2	8
56	Self-Consistent Structure of Metallic Hydrogen. Physical Review Letters, 1977, 38, 415-418.	7.8	60
57	Thermal diffuse x-ray scattering in simple metals. Physical Review B, 1976, 14, 448-458.	3.2	8