
Alinda Friedman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A computerized spatial orientation test. Behavior Research Methods, 2020, 52, 799-812.	2.3	25
2	Examining the Accuracy and Use of Portion Size Estimation Aids in Parents of Children With Obesity: A Randomized Controlled Trial. Journal of Nutrition Education and Behavior, 2018, 50, 918-923.	0.3	1
3	The contribution of nonrigid motion and shape information to object perception in pigeons and humans. Journal of Vision, 2017, 17, 17.	0.1	3
4	Where are you? The effect of uncertainty and its visual representation on location judgments in GPS-like displays Journal of Experimental Psychology: Applied, 2016, 22, 381-392.	0.9	6
5	Systematic review of physical activity and cognitive development in early childhood. Journal of Science and Medicine in Sport, 2016, 19, 573-578.	0.6	202
6	Systematic review of sedentary behavior and cognitive development in early childhood. Preventive Medicine, 2015, 78, 115-122.	1.6	148
7	Vague cognitive regions in geography and geographic information science. International Journal of Geographical Information Science, 2014, 28, 1802-1820.	2.2	34
8	Bayesian combination of two-dimensional location estimates. Behavior Research Methods, 2013, 45, 98-107.	2.3	8
9	Location memory for dots in polygons versus cities in regions: Evaluating the category adjustment model Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1336-1351.	0.7	9
10	The relative weight of shape and non-rigid motion cues in object perception: A model of the parameters underlying dynamic object discrimination. Journal of Vision, 2012, 12, 16-16.	0.1	5
11	View combination in recognition of 3â€ <scp>D</scp> virtual reality layouts. PsyCh Journal, 2012, 1, 82-89.	0.5	0
12	Food Portion Estimation by Children with Obesity: The Effects of Estimation Method and Food Type. Journal of the Academy of Nutrition and Dietetics, 2012, 112, 302-307.	0.4	10
13	Representational pseudoneglect and reference points both influence geographic location estimates. Psychonomic Bulletin and Review, 2012, 19, 277-284.	1.4	7
14	View combination: A generalization mechanism for visual recognition. Cognition, 2011, 119, 229-241.	1.1	6
15	Contributions of category and fine-grained information to location memory: When categories don't weigh in. Memory and Cognition, 2010, 38, 154-162.	0.9	1
16	Learning fine-grained and category information in navigable real-world space. Memory and Cognition, 2010, 38, 1026-1040.	0.9	26
17	Facilitation by view combination and coherent motion in dynamic object recognition. Vision Research, 2010, 50, 202-210.	0.7	6
18	Dice, Golf Balls, and CDs: Assumptions About Portion Size Measurement Aids. Canadian Journal of Dietetic Practice and Research, 2010, 71, 146-149.	0.5	15

Alinda Friedman

#	Article	IF	CITATIONS
19	View combination in moving objects: The role of motion in discriminating between novel views of similar and distinctive objects by humans and pigeons. Vision Research, 2009, 49, 594-607.	0.7	14
20	Learning scenes from multiple views: Novel views can be recognized more efficiently than learned views. Memory and Cognition, 2009, 37, 90-99.	0.9	13
21	Modulation of Viewpoint Effects in Object Recognition by Shape and Motion Cues. Perception, 2009, 38, 1628-1648.	0.5	10
22	The role of categories and spatial cuing in global-scale location estimates Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 94-112.	0.7	24
23	View combination in scene recognition. Memory and Cognition, 2008, 36, 467-478.	0.9	23
24	Penetrating the geometric module: Catalyzing children's use of landmarks Developmental Psychology, 2007, 43, 1523-1530.	1.2	85
25	Dynamic object recognition in pigeons and humans. Learning and Behavior, 2006, 34, 215-228.	0.5	20
26	Global-scale location and distance estimates: Common representations and strategies in absolute and relative judgments Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 333-346.	0.7	51
27	Pigeons See Correspondence Between Objects and Their Pictures. Psychological Science, 2006, 17, 966-972.	1.8	30
28	Recognition by Humans and Pigeons of Novel Views of 3-D Objects and Their Photographs Journal of Experimental Psychology: General, 2005, 134, 149-162.	1.5	27
29	Cross-cultural similarities and differences in North Americans' geographic location judgments. Psychonomic Bulletin and Review, 2005, 12, 1054-1060.	1.4	15
30	Recognizing rotated views of objects: Interpolation versus generalization by humans and pigeons. Psychonomic Bulletin and Review, 2003, 10, 135-140.	1.4	33
31	An automated apparatus for presenting depth-rotated three-dimensional objects in human and animal object recognition research. Behavior Research Methods, 2003, 35, 343-349.	1.3	7
32	The development of geographic categories and biases. Journal of Experimental Child Psychology, 2003, 84, 265-285.	0.7	10
33	Bidimensional Regression: Assessing the Configural Similarity and Accuracy of Cognitive Maps and Other Two-Dimensional Data Sets Psychological Methods, 2003, 8, 468-491.	2.7	134
34	A basis for bias in geographical judgments. Psychonomic Bulletin and Review, 2002, 9, 151-159.	1.4	24
35	Spatial location judgments: A cross-national comparison of estimation bias in subjective North American geography. Psychonomic Bulletin and Review, 2002, 9, 615-623.	1.4	16
36	The effect of distinctive parts on recognition of depth-rotated objects by pigeons (Columba livia) and humans Journal of Experimental Psychology: General, 2001, 130, 238-255.	1.5	23

Alinda Friedman

#	Article	IF	CITATIONS
37	Measuring and predicting visual fidelity. , 2001, , .		88
38	Reasoning about geography Journal of Experimental Psychology: General, 2000, 129, 193-219.	1.5	79
39	Updating geographical knowledge: Principles of coherence and inertia Journal of Experimental Psychology: Learning Memory and Cognition, 2000, 26, 900-914.	0.7	131
40	Grouping and detecting vertices in 2-D, 3-D, and quasi-3-D objects Canadian Journal of Experimental Psychology, 1998, 52, 114-127.	0.7	5
41	The importance of being upright: Use of environmental and viewer-centered reference frames in shape discriminations of novel three-dimensional objects. Memory and Cognition, 1996, 24, 285-295.	0.9	20
42	Effects of distance between objects and distance from the vertical axis on shape identity judgments. Memory and Cognition, 1994, 22, 552-564.	0.9	5
43	Shape discriminations of three-dimensional objects depend on the number and location of bends. Perception & Psychophysics, 1994, 56, 288-300.	2.3	19
44	Seeing versus imagining movement in depth Canadian Journal of Psychology, 1990, 44, 371-383.	0.8	7
45	Dividing attention between the hands and the head: Performance trade-offs between rapid finger tapping and verbal memory Journal of Experimental Psychology: Human Perception and Performance, 1988, 14, 60-68.	0.7	41
46	Cognitive coordinate systems for mental rotation Canadian Psychology, 1988, 29, 383-384.	1.4	3
47	Task-Sharing within and between Hemispheres: A Multiple-Resources Approach. Human Factors, 1988, 30, 633-643.	2.1	32
48	Multiple resources in divided attention: A cross-modal test of the independence of hemispheric resources Journal of Experimental Psychology: Human Perception and Performance, 1985, 11, 40-49.	0.7	36
49	Dividing attention within and between hemispheres: Testing a multiple resources approach to limited-capacity information processing Journal of Experimental Psychology: Human Perception and Performance, 1982, 8, 625-650.	0.7	113
50	Hemispheres as independent resource system: Limited-capacity processing and cerebral specialization Journal of Experimental Psychology: Human Perception and Performance, 1981, 7, 1031-1058.	0.7	272
51	Framing pictures: The role of knowledge in automatized encoding and memory for gist Journal of Experimental Psychology: General, 1979, 108, 316-355.	1.5	616
52	Remembering the levels of information in words. Memory and Cognition, 1978, 6, 156-164.	0.9	62
53	Memorial comparisons without the "mind's eye― Journal of Verbal Learning and Verbal Behavior, 1978, 17, 427-444.	3.8	56
54	Encoding the levels of information in pictures and words Journal of Experimental Psychology: General, 1976, 105, 169-190.	1.5	40

#	Article	IF	CITATIONS
55	Finding the Relevant Attribute of Visual or Auditory Stimuli. American Journal of Psychology, 1976, 89, 601.	0.5	0