Mu-Ping Nieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318221/publications.pdf

Version: 2024-02-01

126708 114278 4,499 112 33 63 citations h-index g-index papers 112 112 112 5708 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2761-2771.	1.4	850
2	Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Science Advances, 2017, 3, e1701212.	4.7	195
3	Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1513, 83-94.	1.4	131
4	SANS Study of the Structural Phases of Magnetically Alignable Lanthanide-Doped Phospholipid Mixtures. Langmuir, 2001, 17, 2629-2638.	1.6	128
5	SANS Study on the Effect of Lanthanide Ions and Charged Lipids on the Morphology of Phospholipid Mixtures. Biophysical Journal, 2002, 82, 2487-2498.	0.2	117
6	Magnetically Alignable Phase of Phospholipid "Bicelle―Mixtures Is a Chiral Nematic Made Up of Wormlike Micelles. Langmuir, 2004, 20, 7893-7897.	1.6	117
7	"Bicellar―Lipid Mixtures as used in Biochemical and Biophysical Studies. Die Naturwissenschaften, 2005, 92, 355-366.	0.6	117
8	Cholesterol in Bilayers with PUFA Chains: Doping with DMPC or POPC Results in Sterol Reorientation and Membrane-Domain Formation. Biochemistry, 2010, 49, 7485-7493.	1.2	109
9	Comprehensive Examination of Mesophases Formed by DMPC and DHPC Mixtures. Langmuir, 2005, 21, 5356-5361.	1.6	103
10	Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: A small-angle neutron scattering study. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1720, 84-91.	1.4	92
11	Combinational Effects of Active Targeting, Shape, and Enhanced Permeability and Retention for Cancer Theranostic Nanocarriers. ACS Applied Materials & Enhanced Permeability and Retention for Cancer Theranostic Nanocarriers.	4.0	83
12	SANS Characterization of an Anisotropic Poly(vinyl alcohol) Hydrogel with Vascular Applications. Macromolecules, 2007, 40, 3655-3662.	2.2	82
13	Effect of Cations on the Structure of Bilayers Formed by Lipopolysaccharides Isolated from Pseudomonas aeruginosa PAO1. Journal of Physical Chemistry B, 2008, 112, 8057-8062.	1.2	82
14	Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers, 2016, 8, 83.	2.0	81
15	Chain Conformation of a New Class of PEG-Based Thermoresponsive Polymer Brushes Grafted on Silicon as Determined by Neutron Reflectometry. Langmuir, 2009, 25, 10271-10278.	1.6	79
16	Effects of additives on the structure of rhamnolipid (biosurfactant): A small-angle neutron scattering (SANS) study. Journal of Colloid and Interface Science, 2008, 319, 590-593.	5.0	67
17	Spontaneously Formed Unilamellar Vesicles with Path-Dependent Size Distribution. Langmuir, 2005, 21, 6656-6661.	1.6	66
18	Development of "all natural―layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 273-285.	2.0	65

#	Article	IF	Citations
19	Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. Journal of the American Chemical Society, 2019, 141, 16108-16116.	6.6	63
20	A fluorescent polymer film with self-assembled three-dimensionally ordered nanopores: preparation, characterization and its application for explosives detection. Journal of Materials Chemistry A, 2014, 2, 14613-14621.	5.2	58
21	Highly Stable Phospholipid Unilamellar Vesicles from Spontaneous Vesiculation:Â A DLS and SANS Study. Journal of Physical Chemistry B, 2005, 109, 609-616.	1.2	54
22	The Functional Significance of Lipid Diversity: Orientation of Cholesterol in Bilayers Is Determined by Lipid Species. Journal of the American Chemical Society, 2009, 131, 16358-16359.	6.6	51
23	Modulation of polypeptide conformation through donor–acceptor transformation of side-chain hydrogen bonding ligands. Nature Communications, 2017, 8, 92.	5. 8	51
24	Neutron Diffraction Study of Pseudomonasaeruginosa Lipopolysaccharide Bilayers. Journal of Physical Chemistry B, 2007, 111, 2477-2483.	1.2	48
25	What determines the thickness of a biological membrane. General Physiology and Biophysics, 2009, 28, 117-125.	0.4	47
26	Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications. Chemical Communications, 2012, 48, 9343.	2.2	44
27	The study of liposomes, lamellae and membranes using neutrons and X-rays. Current Opinion in Colloid and Interface Science, 2007, 12, 17-22.	3.4	41
28	Formation of Kinetically Trapped Nanoscopic Unilamellar Vesicles from Metastable Nanodiscs. Langmuir, 2011, 27, 14308-14316.	1.6	41
29	Temperature Driven Annealing of Perforations in Bicellar Model Membranes. Langmuir, 2011, 27, 4838-4847.	1.6	39
30	Morphology of Comb-Shaped Proton Exchange Membrane Copolymers Based on a Neutron Scattering Study. Macromolecules, 2008, 41, 6176-6182.	2.2	37
31	Morphological Characterization of DMPC/CHAPSO Bicellar Mixtures: A Combined SANS and NMR Study. Langmuir, 2013, 29, 15943-15957.	1.6	36
32	Reversible mechanofluorochromism of aniline-terminated phenylene ethynylenes. Chemical Science, 2018, 9, 5415-5426.	3.7	35
33	The effects of temperature, salinity, concentration and PEGylated lipid on the spontaneous nanostructures of bicellar mixtures. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1871-1880.	1.4	34
34	Chemically Controlled Helical Polymorphism in Protein Tubes by Selective Modulation of Supramolecular Interactions. Journal of the American Chemical Society, 2019, 141, 19448-19457.	6.6	34
35	Spontaneously Formed Unilamellar Vesicles. Methods in Enzymology, 2009, 465, 3-20.	0.4	33
36	Sulfoethylated nanofibrillated cellulose: Production and properties. Carbohydrate Polymers, 2017, 169, 515-523.	5.1	33

#	Article	IF	Citations
37	Changes in the calcium cluster distribution of ultrafiltered and diafiltered fresh skim milk as observed by Small Angle Neutron Scattering. Journal of Dairy Research, 2011, 78, 349-356.	0.7	32
38	Effect of the Hydrophilic Size on the Structural Phases of Aqueous Nonionic Gemini Surfactant Solutions. Langmuir, 2004, 20, 9061-9068.	1.6	31
39	Characterization of protein resistant, grafted methacrylate polymer layers bearing oligo(ethylene) Tj ETQq1 I	0.784314 rgl	3T/Overlock
40	Principles Governing the Self-Assembly of Coiled-Coil Protein Nanoparticles. Biophysical Journal, 2016, 110, 646-660.	0.2	31
41	The Morphology of Self-Assembled Lipid-Based Nanoparticles Affects Their Uptake by Cancer Cells. Journal of Biomedical Nanotechnology, 2016, 12, 1852-1863.	0.5	30
42	Characterization of anisotropic poly(vinyl alcohol) hydrogel by small- and ultra-small-angle neutron scattering. Journal of Chemical Physics, 2009, 130, 034903.	1.2	29
43	Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. Journal of the American Chemical Society, 2020, 142, 12715-12729.	6.6	29
44	Comparison of Solution Structures and Stabilities of Native, Partially Unfolded and Partially Refolded Pepsin. Biochemistry, 2006, 45, 13982-13992.	1.2	28
45	Asymmetric Distribution of Cholesterol in Unilamellar Vesicles of Monounsaturated Phospholipids. Langmuir, 2009, 25, 13522-13527.	1.6	28
46	Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors. Nanotechnology, 2011, 22, 195102.	1.3	28
47	Growth kinetics of lipid-based nanodiscs to unilamellar vesicles—A time-resolved small angle neutron scattering (SANS) study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1025-1035.	1.4	28
48	Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates. Langmuir, 2015, 31, 12920-12928.	1.6	27
49	Directed polymorphism and mechanofluorochromism of conjugated materials through weak non-covalent control. Journal of Materials Chemistry C, 2019, 7, 8316-8324.	2.7	27
50	Small-Angle Neutron Scattering to Detect Rafts and Lipid Domains. Methods in Molecular Biology, 2007, 398, 231-244.	0.4	27
51	Bicellar Mixtures Containing Pluronic F68: Morphology and Lateral Diffusion from Combined SANS and PFG NMR Studies. Langmuir, 2010, 26, 2630-2638.	1.6	26
52	Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter, 2009, 5, 2694.	1.2	25
53	Outer membrane vesicles (OMVs) enabled bioâ€applications: A critical review. Biotechnology and Bioengineering, 2022, 119, 34-47.	1.7	25
54	Effects of Charge Density and Thermal History on the Morphologies of Spontaneously Formed Unilamellar Vesicles. Journal of Physical Chemistry B, 2010, 114, 5729-5735.	1.2	24

#	Article	IF	CITATIONS
55	A universal discoidal nanoplatform for the intracellular delivery of PNAs. Nanoscale, 2019, 11, 12517-12529.	2.8	24
56	Aggregationâ€Enhanced Photoluminescence and Photoacoustics of Atomically Precise Gold Nanoclusters in Lipid Nanodiscs (NANO ²). Advanced Functional Materials, 2021, 31, 2009750.	7.8	22
57	Multimeric forms of the small multidrug resistance protein EmrE in anionic detergent. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 526-535.	1.4	21
58	Polylysine-grafted Au ₁₄₄ nanoclusters: birth and growth of a healthy surface-plasmon-resonance-like band. Chemical Science, 2017, 8, 3228-3238.	3.7	21
59	Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ. Journal of the American Chemical Society, 2017, 139, 11106-11116.	6.6	21
60	The influence of curvature on membrane domains. European Biophysics Journal, 2008, 37, 665-671.	1.2	20
61	Controlled release mechanisms of spontaneously forming unilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1467-1471.	1.4	20
62	A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. Journal of the American Chemical Society, 2021, 143, 6622-6633.	6.6	19
63	Structure from substrate supported lipid bilayers (Review). Biointerphases, 2008, 3, FB55-FB63.	0.6	18
64	Controllable Formation of Pyrene (C ₁₆ H ₁₀) Excimers in Polystyrene/Tetrabutylammonium Hexafluorophosphate Films through Solvent Vapor and Temperature Annealing. Journal of Physical Chemistry C, 2013, 117, 1428-1435.	1.5	18
65	Metalloâ€Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angewandte Chemie - International Edition, 2021, 60, 1281-1289.	7.2	18
66	Small-Angle Scattering from Homogenous and Heterogeneous Lipid Bilayers. Behavior Research Methods, 2010, , 201-235.	2.3	17
67	Stable Discoidal Bicelles: A Platform of Lipid Nanocarriers for Cellular Delivery. Methods in Molecular Biology, 2017, 1522, 273-282.	0.4	17
68	Templated Supramolecular Structures of Multichromic, Multiresponsive Perylene Diimide-Polydiacetylene Films. Macromolecules, 2020, 53, 4501-4510.	2.2	17
69	Structural Phase Behavior of High-Concentration, Alignable Biomimetic Bicelle Mixtures. Macromolecular Symposia, 2005, 219, 135-146.	0.4	16
70	Lipid-based nanodiscs as models for studying mesoscale coalescence – a transport limited case. Soft Matter, 2014, 10, 5055.	1.2	16
71	DNA-Mediated Step-Growth Polymerization of Bottlebrush Macromonomers. Journal of the American Chemical Society, 2020, 142, 10297-10301.	6.6	16
72	Magnetic studies of mesoporous nanostructured iron oxide materials synthesized by one-step soft-templating. Dalton Transactions, 2015, 44, 11943-11953.	1.6	15

#	Article	IF	Citations
73	Genetically Engineered Bacterial Outer Membrane Vesicles with Expressed Nanoluciferase Reporter for <i>in Vivo</i> Bioluminescence Kinetic Modeling through Noninvasive Imaging. ACS Applied Bio Materials, 2019, 2, 5608-5615.	2.3	15
74	Crystalline Mesoporous Complex Oxides: Porosityâ€Controlled Electromagnetic Response. Advanced Functional Materials, 2020, 30, 1909491.	7.8	15
75	Dual-Modality Poly- <scp>I</scp> -histidine Nanoparticles to Deliver Peptide Nucleic Acids and Paclitaxel for In Vivo Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 45244-45258.	4.0	15
76	Multichannel hollow carbon fibers: Processing, structure, and properties. Carbon, 2021, 174, 730-740.	5.4	14
77	Spontaneously Forming Ellipsoidal Phospholipid Unilamellar Vesicles and Their Interactions with Helical Domains of Saposin C. Langmuir, 2006, 22, 11028-11033.	1.6	13
78	Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis. Journal of Magnetism and Magnetic Materials, 2017, 427, 7-13.	1.0	13
79	An unusual morphological transformation of rhamnolipid aggregates induced by concentration and addition of styrene: A small angle neutron scattering (SANS) study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 373, 42-50.	2.3	12
80	ABC Supramolecular Triblock Copolymer by ROMP and ATRP. Macromolecules, 2017, 50, 4244-4255.	2.2	12
81	Codelivery of Paclitaxel and Parthenolide in Discoidal Bicelles for a Synergistic Anticancer Effect: Structure Matters. Advanced NanoBiomed Research, 2022, 2, 2100080.	1.7	12
82	Super-hydrophobic "smart―sand for buried explosive detection. Sensors and Actuators B: Chemical, 2014, 195, 52-57.	4.0	11
83	Morphology-Induced Defects Enhance Lipid Transfer Rates. Langmuir, 2016, 32, 9757-9764.	1.6	11
84	Insight into the interactions between pyrene and polystyrene for efficient quenching nitroaromatic explosives. Journal of Materials Chemistry C, 2017, 5, 12466-12473.	2.7	11
85	What causes the anomalous aggregation in pluronic aqueous solutions?. Soft Matter, 2018, 14, 7653-7663.	1.2	11
86	Glycosyltransferase-Induced Morphology Transition of Glycopeptide Self-Assemblies with Proteoglycan Residues. ACS Macro Letters, 2020, 9, 929-936.	2.3	10
87	Refining internal bilayer structure of bicelles resolved by extended-q small angle X-ray scattering. Chemistry and Physics of Lipids, 2020, 231, 104945.	1.5	10
88	Effects of fluidity and charge density on the morphology of a bicellar mixture – A SANS study. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183315.	1.4	10
89	Morphology and opto-thermal properties of the thermo-responsive PNIPAAm-protected gold nanorods. Polymer, 2016, 84, 138-147.	1.8	9
90	Molecular Design of a Minimal Peptide Nanoparticle. ACS Biomaterials Science and Engineering, 2017, 3, 724-732.	2.6	9

#	Article	IF	Citations
91	Unique Effects of the Chain Lengths and Anions of Tetra-alkylammonium Salts on Quenching Pyrene Excimer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14801-14811.	4.0	8
92	Effects of Membrane Defects and Polymer Hydrophobicity on Networking Kinetics of Vesicles. Langmuir, 2017, 33, 5745-5751.	1.6	8
93	Genetically engineered bio-nanoparticles with co-expressed enzyme reporter and recognition element for IgG immunoassay. Sensors and Actuators Reports, 2019, 1, 100003.	2.3	8
94	Head on Comparison of Self―and Nanoâ€Assemblies of Gamma Peptide Nucleic Acid Amphiphiles. Advanced Functional Materials, 2022, 32, 2109552.	7.8	8
95	Structural Engineering in the Self-Assembly of Amphiphilic Block Copolymers with Reactive Additives: Micelles, Vesicles, and Beyond. Langmuir, 2021, 37, 9865-9872.	1.6	7
96	Patchy metal nanoparticles with polymers: controllable growth and two-way self-assembly. Nanoscale, 2022, 14, 7364-7371.	2.8	7
97	Neutron Scattering Study of Chain Conformations in the Energetically Neutral Pores of Vycor Glass. Macromolecules, 2002, 35, 6384-6391.	2.2	6
98	Adapting a triple-axis spectrometer for small angle neutron scattering measurements. Review of Scientific Instruments, 2008, 79, 095102.	0.6	6
99	Formation mechanism of self-assembled unilamellar vesiclesSpecial issue on Neutron Scattering in Canada. Canadian Journal of Physics, 2010, 88, 735-740.	0.4	6
100	SiO2-TiO2-PBC nanocomposite film morphology, solvent swelling, estimated I‡ parameter, and liquid transport. Polymer, 2017, 123, 247-257.	1.8	5
101	Flower-like Micelles of Polyethylene Oxide End-Capped with Cholesterol. Macromolecules, 2021, 54, 8960-8970.	2.2	5
102	Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection. Nanomedicine, 2022, 17, 959-978.	1.7	5
103	The role of TEOSâ€ŢIP within a pentablock ionomer: Morphology, physical properties, and ion transport. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 575-586.	2.4	4
104	Restrictionâ€Inâ€Motion of Surface Ligands Enhances Photoluminescence of Quantum Dotsâ€"Experiment and Theory. Advanced Materials Interfaces, 0, , 2102079.	1.9	4
105	Spontaneously Forming Unilamellar Phospholipid Vesicles. Macromolecular Symposia, 2005, 219, 123-134.	0.4	3
106	Nanocomplex made up of antimicrobial metallo-supramolecules and model biomembranes – characterization and enhanced fluorescence. Nanoscale, 2021, 13, 14973-14979.	2.8	3
107	Changes Experienced by Low-Concentration Lipid Bicelles as a Function of Temperature. Langmuir, 2022, , .	1.6	3
108	In-situ temperature-controllable shear flow device for neutron scattering measurementâ€"An example of aligned bicellar mixtures. Review of Scientific Instruments, 2015, 86, 025112.	0.6	2

#	Article	IF	CITATION
109	Metalloâ€Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angewandte Chemie, 2021, 133, 1301-1309.	1.6	2
110	Fluorescence Quenching Kinetics of Py Excimer in PS Films. Materials Research Society Symposia Proceedings, 2014, 1629, 1.	0.1	1
111	Aggregation of Phospholipid Based Vesicle Using Triblock Polymer. MRS Advances, 2016, 1, 3749-3754.	0.5	O
112	Correlation of the hierarchical structure with rheological behavior of polypseudorotaxane gel composed of pluronic and \hat{l}^2 -cyclodextrin. Soft Matter, 2020, 16, 4990-4998.	1.2	0