Carlos Aleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318100/publications.pdf

Version: 2024-02-01

616 papers 13,001 citations

41258 49 h-index 72 g-index

647 all docs

647 docs citations

times ranked

647

11568 citing authors

#	Article	IF	CITATIONS
1	Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Science, 2008, 50, 721-728.	3.0	240
2	Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry, 2016, 18, 5930-5956.	4.6	196
3	Crystal Structure of the α-Form of Poly(l-lactide). Macromolecules, 2001, 34, 4795-4801.	2.2	191
4	Why Î'-Valerolactone Polymerizes and Î ³ -Butyrolactone Does Not. Journal of Organic Chemistry, 2008, 73, 2674-2678.	1.7	152
5	Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116, 2847-2856.	0.6	149
6	Symmetric Supercapacitors Based on Multilayers of Conducting Polymers. Journal of Physical Chemistry C, 2011, 115, 8430-8438.	1.5	139
7	Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms. Progress in Organic Coatings, 2009, 65, 88-93.	1.9	128
8	Marine paint fomulations: Conducting polymers as anticorrosive additives. Progress in Organic Coatings, 2007, 59, 46-52.	1.9	125
9	Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): Benefits in the electroactivity of the conducting polymer. European Polymer Journal, 2007, 43, 2342-2349.	2.6	116
10	Electrochemical Synthesis of Poly(3,4-ethylenedioxythiophene) on Steel Electrodes: Properties and Characterization. Journal of Polymer Research, 2006, 13, 193-200.	1.2	108
11	Polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion. Surface and Coatings Technology, 2009, 203, 3763-3769.	2.2	103
12	Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. Journal of Materials Chemistry A, 2016, 4, 1792-1805.	5.2	97
13	Diradical Dications ofm- andp-Phenylenebis[2,5-di(2-thienyl)-1-pyrrole]:Â Weakly Coupled Diradicals. Journal of Organic Chemistry, 2001, 66, 4058-4061.	1.7	95
14	Reviewing Extrapolation Procedures of the Electronic Properties on the π-Conjugated Polymer Limit. Journal of Physical Chemistry A, 2012, 116, 7571-7583.	1.1	92
15	Nanomembranes and Nanofibers from Biodegradable Conducting Polymers. Polymers, 2013, 5, 1115-1157.	2.0	90
16	Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries. Journal of Materials Chemistry A, 2016, 4, 8952-8968.	5.2	89
17	Drug delivery systems based on intrinsically conducting polymers. Journal of Controlled Release, 2019, 309, 244-264.	4.8	89
18	Measuring the Proton Conductivity of Ion-Exchange Membranes Using Electrochemical Impedance Spectroscopy and Through-Plane Cell. Journal of Physical Chemistry B, 2014, 118, 1102-1112.	1.2	81

#	Article	IF	Citations
19	Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. Applied Sciences (Switzerland), 2017, 7, 60.	1.3	81
20	Ï€ Conjugation in 2,2â€~-Bithiophene and Its Dimethyl Derivatives: Model Compounds of Organic Conducting Polymers Based on Thiophene Rings. The Journal of Physical Chemistry, 1996, 100, 1524-1529.	2.9	78
21	Thermodynamic Control of the Polymerizability of Five-, Six-, and Seven-Membered Lactones. Journal of Organic Chemistry, 2009, 74, 6237-6244.	1.7	74
22	Electrospun Conducting and Biocompatible Uniaxial and Core–Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 2019, 4, 3660-3672.	1.6	74
23	Solvation of cytosine and thymine using a combined Discrete/SCRF model. Chemical Physics Letters, 1999, 302, 461-470.	1.2	72
24	The keto–amino/enol tautomerism of cytosine in aqueous solution. A theoretical study using combined discrete/self-consistent reaction field models. Chemical Physics, 2000, 253, 13-19.	0.9	68
25	Calculated and Experimental NMR Chemical Shifts of p-Menthane-3,9-diols. A Combination of Molecular Dynamics and Quantum Mechanics to Determine the Structure and the Solvent Effects. Journal of Organic Chemistry, 2001, 66, 3775-3782.	1.7	68
26	Comparative Theoretical Study of Heterocyclic Conducting Oligomers:  Neutral and Oxidized Forms. Journal of Physical Chemistry C, 2007, 111, 4823-4830.	1.5	67
27	Binding of a C-End Rule Peptide to the Neuropilin-1 Receptor: A Molecular Modeling Approach. Biochemistry, 2011, 50, 1755-1762.	1.2	67
28	New Sulfonated Polystyrene and Styrene–Ethylene/Butylene–Styrene Block Copolymers for Applications in Electrodialysis. Journal of Physical Chemistry B, 2012, 116, 11767-11779.	1.2	63
29	Suitability of the PM3-derived molecular electrostatic potentials. Journal of Computational Chemistry, 1993, 14, 799-808.	1.5	62
30	Cellular Adhesion, Proliferation and Viability on Conducting Polymer Substrates. Macromolecular Bioscience, 2008, 8, 1144-1151.	2.1	62
31	On the Ability of Modified Peptide Links to Form Hydrogen Bonds. Journal of Physical Chemistry A, 2001, 105, 6717-6723.	1.1	61
32	Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer. Progress in Organic Coatings, 2010, 69, 26-30.	1.9	61
33	A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy. Applied Surface Science, 2013, 273, 758-768.	3.1	61
34	Sequence dependence of C-end rule peptides in binding and activation of neuropilin-1 receptor. Journal of Structural Biology, 2013, 182, 78-86.	1.3	58
35	Molecular and Electronic Structures of Heteroaromatic Oligomers:Â Model Compounds of Polymers with Quantum-Well Structures. Journal of Organic Chemistry, 1998, 63, 1041-1048.	1.7	57
36	Hydration of cytosine using combined discrete/SCRF models: influence of the number of discrete solvent molecules. Chemical Physics, 1999, 244, 151-162.	0.9	57

#	Article	IF	CITATIONS
37	Application of a polythiophene derivative as anticorrosive additive for paints. Progress in Organic Coatings, 2005, 53, 217-224.	1.9	57
38	Ultrathin Films of Polypyrrole Derivatives for Dopamine Detection. Journal of Physical Chemistry C, 2011, 115, 14933-14941.	1.5	57
39	Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif. Soft Matter, 2011, 7, 11405.	1.2	56
40	Novel Epoxy Coating Based on DMSO as a Green Solvent, Reducing Drastically the Volatile Organic Compound Content and Using Conducting Polymers As a Nontoxic Anticorrosive Pigment. ACS Sustainable Chemistry and Engineering, 2013, 1, 1609-1618.	3.2	56
41	On the helical conformation of un-ionized poly(\hat{l}^3 -d-glutamic acid). International Journal of Biological Macromolecules, 1998, 23, 175-184.	3.6	55
42	Nanostructured conducting polymer for dopamine detection. Journal of Materials Chemistry, 2010, 20, 10652.	6.7	55
43	Retromodified Residues: Small Peptides and Polymers. Interactions, Force-Field Parametrization and Conformational Analyses. Journal of Organic Chemistry, 1995, 60, 910-924.	1.7	54
44	Selective Detection of Dopamine Combining Multilayers of Conducting Polymers with Gold Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 4669-4682.	1.2	54
45	Conformational Properties of α-Amino Acids Disubstituted at the α-Carbon. Journal of Physical Chemistry B, 1997, 101, 5046-5050.	1.2	53
46	On the molecular properties of polyaniline: A comprehensive theoretical study. Polymer, 2008, 49, 5169-5176.	1.8	53
47	Polyaniline Emeraldine Salt in the Amorphous Solid State: Polaron versus Bipolaron. Journal of Physical Chemistry B, 2014, 118, 11552-11562.	1.2	52
48	Principles of nanostructure design with protein building blocks. Proteins: Structure, Function and Bioinformatics, 2007, 68, 1-12.	1.5	51
49	2,2'-Bithienyl derivatives: EPR investigation of their radical ions in solution, electrochemical properties, and crystal structure. Journal of Organic Chemistry, 1993, 58, 3091-3099.	1.7	50
50	Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation. Synthetic Metals, 2005, 149, 151-156.	2.1	50
51	Electrochemical characteristics of copolymers electrochemically synthesized from N-methylpyrrole and 3,4-ethylenedioxythiophene on steel electrodes: Comparison with homopolymers. Chemical Physics, 2006, 328, 299-306.	0.9	50
52	Exploiting Molecular Selfâ€Assembly: From Ureaâ€Based Organocatalysts to Multifunctional Supramolecular Gels. Chemistry - A European Journal, 2014, 20, 10720-10731.	1.7	50
53	A Rigid, Chiral, Dendronized Polymer with a Thermally Stable, Rightâ€Handed Helical Conformation. Chemistry - A European Journal, 2008, 14, 6924-6934.	1.7	49
54	Ab initio calculations on π-stacked thiophene dimer, trimer, and tetramer: Structure, interaction energy, cooperative effects, and intermolecular electronic parameters. Journal of Computational Chemistry, 2008, 29, 69-78.	1.5	49

#	Article	IF	Citations
55	Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices. Journal of Materials Chemistry, 2012, 22, 13110.	6.7	49
56	All-polythiophene rechargeable batteries. Organic Electronics, 2014, 15, 40-46.	1.4	49
57	Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment. Industrial Crops and Products, 2015, 65, 506-514.	2.5	49
58	Conformation of the helical polyamide poly(α-isobutyl L-aspartate). Macromolecules, 1992, 25, 5225-5230.	2.2	48
59	Theoretical Investigation of the 3,4-Ethylenedioxythiophene Dimer and Unsubstituted Heterocyclic Derivatives. Journal of Physical Chemistry A, 2004, 108, 1440-1447.	1.1	48
60	Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. Journal of Materials Chemistry B, 2015, 3, 5904-5932.	2.9	48
61	Study of epoxy and alkyd coatings modified with emeraldine base form of polyaniline. Progress in Organic Coatings, 2007, 58, 316-322.	1.9	47
62	Flexible Electrodes for Supercapacitors Based on the Supramolecular Assembly of Biohydrogel and Conducting Polymer. Journal of Physical Chemistry C, 2018, 122, 1078-1090.	1.5	47
63	Smart Drug Delivery from Electrospun Fibers through Electroresponsive Polymeric Nanoparticles. ACS Applied Bio Materials, 2018, 1, 1594-1605.	2.3	47
64	Paradigm Shift for Preparing Versatile M ²⁺ -Free Gels from Unmodified Sodium Alginate. Biomacromolecules, 2017, 18, 2967-2979.	2.6	46
65	Advanced Functional Hydrogel Biomaterials Based on Dynamic B–O Bonds and Polysaccharide Building Blocks. Biomacromolecules, 2020, 21, 3984-3996.	2.6	46
66	Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9719-9732.	4.0	45
67	Selfâ€Assembly of Tetraphenylalanine Peptides. Chemistry - A European Journal, 2015, 21, 16895-16905.	1.7	45
68	Characterization of the Quinoid Structure for the 2,2 -Bithiophene and 2,2 ,5 ,2  -Terthiophene Dications. The Journal of Physical Chemistry, 1996, 100, 14661-14664.	2.9	44
69	Evaluation of an environmentally friendly anticorrosive pigment for alkyd primer. Progress in Organic Coatings, 2012, 73, 321-329.	1.9	44
70	Conformational analysis of succinamide analogs. Journal of Organic Chemistry, 1995, 60, 6135-6140.	1.7	43
71	Influence of the Phenyl Side Chain on the Conformation of Cyclopropane Analogues of Phenylalanine. Journal of Physical Chemistry B, 2002, 106, 11849-11858.	1.2	43
72	Phosphonic acid/silica-based films: A potential treatment for corrosion protection. Corrosion Science, 2012, 60, 173-180.	3.0	43

#	Article	IF	CITATIONS
73	A rational design for the selective detection of dopamine using conducting polymers. Physical Chemistry Chemical Physics, 2014, 16, 7850-7861.	1.3	43
74	Plasma surface modification of polymers for sensor applications. Journal of Materials Chemistry B, 2018, 6, 6515-6533.	2.9	43
75	A molecular mechanical study of the structure of poly(\hat{l} ±-aminoisobutyric acid). Biopolymers, 1992, 32, 621-631.	1.2	42
76	On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins. Materials and Corrosion - Werkstoffe Und Korrosion, 2006, 57, 683-688.	0.8	42
77	Conformational Preferences of α-Substituted Proline Analogues. Journal of Organic Chemistry, 2008, 73, 3418-3427.	1.7	42
78	Biodegradable free-standing nanomembranes of conducting polymer:polyester blends as bioactive platforms for tissue engineering. Journal of Materials Chemistry, 2012, 22, 585-594.	6.7	42
79	Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels, 2019, 5, 14.	2.1	42
80	De Novo Tubular Nanostructure Design Based on Self-Assembly of β-Helical Protein Motifs. Structure, 2006, 14, 1137-1148.	1.6	41
81	Bioactive and electroactive response of flexible polythiophene:polyester nanomembranes for tissue engineering. Polymer Chemistry, 2012, 3, 979.	1.9	41
82	DNA adsorbed on hydroxyapatite surfaces. Journal of Materials Chemistry B, 2014, 2, 6953-6966.	2.9	41
83	Conformational analysis of helical poly(\hat{l}^2 -L- aspartate)s by IR dichroism. Biopolymers, 1995, 36, 263-271.	1.2	40
84	Electroactivity, electrochemical stability and electrical conductivity of multilayered films containing poly(3,4-ethylendioxythiophene) and poly(N-methylpyrrole). European Polymer Journal, 2007, 43, 1876-1882.	2.6	40
85	Hexaazatriphenylene (HAT) versus triâ€HAT: The Bigger the Better?. Chemistry - A European Journal, 2011, 17, 10312-10322.	1.7	40
86	Ultraporous poly(3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films, 2012, 520, 4402-4409.	0.8	40
87	A new strategy for the evaluation of force parameters from quantum mechanical computations. Journal of Computational Chemistry, 1991, 12, 664-674.	1.5	39
88	Folding of Methylene Groups in Linear Glutaramide Analogs. Journal of the American Chemical Society, 1995, 117, 7307-7310.	6.6	39
89	Helical preferences of alanine, glycine, and aminoisobutyric homopeptides. , 1997, 28, 83-93.		39
90	Application of electrochemically produced and oxidized poly(3,4-ethylenedioxythiophene) as anticorrosive additive for paints: Influence of the doping level. Journal of Applied Polymer Science, 2006, 102, 1592-1599.	1.3	39

#	Article	IF	CITATIONS
91	Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Transactions, 2014, 43, 317-327.	1.6	39
92	Elucidating the mechanism of interaction between peptides and inorganic surfaces. Physical Chemistry Chemical Physics, 2015, 17, 15305-15315.	1.3	39
93	Structural Study on Poly(\hat{l}^2 -l-aspartate)s with Short Alkyl Side Chains: \hat{A} Helical and Extended Crystal Forms. Macromolecules, 1996, 29, 8449-8459.	2.2	38
94	Examining the Planarity of Poly(3,4-ethylenedioxythiophene): Consideration of Self-Rigidification, Electronic, and Geometric Effects. Journal of Physical Chemistry A, 2010, 114, 1023-1028.	1.1	38
95	Structure by design: from single proteins and their building blocks to nanostructures. Trends in Biotechnology, 2006, 24, 449-454.	4.9	37
96	Nanostructure Design Using Protein Building Blocks Enhanced by Conformationally Constrained Synthetic Residuesâ€. Biochemistry, 2007, 46, 1205-1218.	1.2	37
97	Sol–gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024. Journal of Colloid and Interface Science, 2014, 426, 308-313.	5.0	37
98	Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4231-4243.	4.0	37
99	Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydrate Polymers, 2018, 200, 456-467.	5.1	37
100	Conductive, self-healable and reusable poly(3,4-ethylenedioxythiophene)-based hydrogels for highly sensitive pressure arrays. Journal of Materials Chemistry C, 2020, 8, 8654-8667.	2.7	36
101	Computational tool to model the packing of polycyclic chains: Structural analysis of amorphous polythiophene. Journal of Computational Chemistry, 2007, 28, 1743-1749.	1.5	35
102	Properties of nanometric and submicrometric multilayered films of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole). European Polymer Journal, 2008, 44, 1323-1330.	2.6	35
103	An assessment of the corrosion protection of AA2024-T3 treated with vinyltrimethoxysilane/(3-glycidyloxypropyl)trimethoxysilane. Corrosion Science, 2015, 92, 200-208.	3.0	35
104	Electrostimulated Release of Neutral Drugs from Polythiophene Nanoparticles: Smart Regulation of Drug–Polymer Interactions. Advanced Healthcare Materials, 2017, 6, 1700453.	3.9	35
105	Hydrogels for flexible and compressible free standing cellulose supercapacitors. European Polymer Journal, 2019, 118, 347-357.	2.6	35
106	A quantum mechanical study of the intrinsic helix-forming tendency of \hat{l}_{\pm} -aminoisobutyric acid and dehydroalanine residues. Biopolymers, 1994, 34, 841-847.	1.2	34
107	Analysis of the Helical Conformations in Poly (.betaL-aspartate)s: Poly(.alphan-butyl) Tj ETQq1 1 0.784314 rgBT 4487-4494.	/Overlock 2.2	10 Tf 50 10 34
108	Silane and epoxy coatings: A bilayer system to protect AA2024 alloy. Progress in Organic Coatings, 2015, 81, 47-57.	1.9	34

#	Article	IF	Citations
109	Simulation of dense amorphous polymers by generating representative atomistic models. Journal of Chemical Physics, 2003, 119, 2915-2922.	1.2	33
110	Poly(2-thiophen-3-yl-malonic acid), a Polythiophene with Two Carboxylic Acids Per Repeating Unit. Journal of Physical Chemistry B, 2010, 114, 6281-6290.	1.2	33
111	Incorporation of a Clot-Binding Peptide into Polythiophene: Properties of Composites for Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11940-11954.	4.0	33
112	Study of the Amide.cntdotcntdotcntdot.Ester Hydrogen Bond in Small Molecules and Its Influence on the Conformation of Polypeptides and Related Polymers. The Journal of Physical Chemistry, 1995, 99, 17653-17661.	2.9	32
113	Conformational Preferences of the Asparagine Residue. Gas-Phase, Aqueous Solution, and Chloroform Solution Calculations on the Model Dipeptide. Journal of Physical Chemistry B, 1997, 101, 3441-3446.	1.2	32
114	N-Acetyl-Nâ€~-methylamide Derivative of (2S,3S)-1-Amino-2,3-diphenylcyclopropanecarboxylic Acid: Theoretical Analysis of the Conformational Impact Produced by the Incorporation of the Second Phenyl Group to the Cyclopropane Analogue of Phenylalanine. Journal of Organic Chemistry, 2003, 68, 7088-7091.	1.7	32
115	Influence of the solvation model and the solvent on the gauche-trans equilibrium of 1,1,2-trichloroethane. Chemical Physics, 2004, 302, 77-83.	0.9	32
116	Hybrid materials consisting of an all-conjugated polythiophene backbone and grafted hydrophilic poly(ethylene glycol) chains. Polymer Chemistry, 2013, 4, 2709.	1.9	32
117	Self-assembled fibrillar networks of a multifaceted chiral squaramide: supramolecular multistimuli-responsive alcogels. Soft Matter, 2016, 12, 4361-4374.	1.2	32
118	Polyaniline coated core-shell polyacrylates: Control of film formation and coating application for corrosion protection. Progress in Organic Coatings, 2019, 128, 40-51.	1.9	32
119	Electroresponsive Alginate-Based Hydrogels for Controlled Release of Hydrophobic Drugs. ACS Biomaterials Science and Engineering, 2020, 6, 6228-6240.	2.6	32
120	Helical Poly(β-peptides):  The Helixâ^'Coil Transition of Poly(α-alkyl-β-aspartate)s in Solution. Macromolecules, 1999, 32, 3257-3263.	2.2	31
121	A simple model to describe the thixotropic behavior of paints. Progress in Organic Coatings, 2006, 57, 229-235.	1.9	31
122	Conducting Polymer Actuator Mechanism Based on the Conformational Flexibility of Calix[4]arene. Angewandte Chemie - International Edition, 2006, 45, 1103-1105.	7.2	31
123	Morphology and growing of nanometric multilayered films formed by alternated layers of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole). Thin Solid Films, 2010, 518, 4203-4210.	0.8	31
124	Detection of Dopamine Using Chemically Synthesized Multilayered Hollow Microspheres. Journal of Physical Chemistry B, 2014, 118, 4702-4709.	1.2	31
125	Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids. Langmuir, 2017, 33, 4036-4048.	1.6	31
126	Conformational Behavior of Macromolecules in Solution. Homopolypeptides of $\hat{l}\pm$ -Aminoisobutyric Acid as Test Cases. Macromolecules, 2001, 34, 7550-7557.	2.2	30

#	Article	IF	CITATIONS
127	Copolymers of N-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties. Polymer International, 2007, 56, 803-809.	1.6	30
128	The Energy Landscape of a Selective Tumor-Homing Pentapeptide. Journal of Physical Chemistry B, 2008, 112, 8692-8700.	1.2	30
129	Hybrid organophosphonic-silane coating for corrosion protection of magnesium alloy AZ91: The influence of acid and alkali pre-treatments. Surface and Coatings Technology, 2019, 357, 728-739.	2.2	30
130	Ab initio SCF and force-field calculations on low-energy conformers of 2-acetylamino-2,N-dimethylpropanamide. Journal of the Chemical Society Perkin Transactions II, 1994, , 563-568.	0.9	29
131	Structural and electronic effects induced by carboxylic acid substitution in isomeric 2,2′-bithiophenes and oligothiophenes: A computational study. Polymer, 2005, 46, 9452-9460.	1.8	29
132	Cross-linking in polypyrrole and poly(N-methylpyrrole): Comparative experimental and theoretical studies. Polymer, 2008, 49, 1066-1075.	1.8	29
133	A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene). Polymer, 2009, 50, 1965-1974.	1.8	29
134	Linear Viscoelastic Response of Dendronized Polymers. Macromolecules, 2012, 45, 8813-8823.	2.2	29
135	Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Polymer Chemistry, 2013, 4, 568-583.	1.9	29
136	Effect of the graft ratio on the properties of polythiopheneâ€ <i>g</i> â€poly(ethylene glycol). Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 239-252.	2.4	29
137	Polypropylene mesh for hernia repair with controllable cell adhesion/de-adhesion properties. Journal of Materials Chemistry B, 2020, 8, 1049-1059.	2.9	29
138	Thermoresponsive Shapeâ€Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Advanced Functional Materials, 2020, 30, 2001683.	7.8	29
139	Synthesis, Properties, and X-ray Structure of 6-Aza-5,7,12,14-tetrathiapentacene as a Novel Polyheterocyclic Electron Donor, and Related Compounds. Journal of Organic Chemistry, 1994, 59, 6200-6207.	1.7	28
140	Solvation of chromone using combined Discrete/SCRF models. Chemical Physics, 1998, 232, 151-159.	0.9	28
141	Structure and morphology of nylon 46 lamellar crystals: Electron microscopy and energy calculations. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 41-52.	2.4	28
142	DNAâ^'Conducting Polymer Complexes:  A Computational Study of the Hydrogen Bond between Building Blocks. Journal of Physical Chemistry B, 2008, 112, 3222-3230.	1.2	28
143	Modeling biominerals formed by apatites and DNA. Biointerphases, 2013, 8, 10.	0.6	28
144	An electroactive and biologically responsive hybrid conjugate based on chemical similarity. Polymer Chemistry, 2013, 4, 1412-1424.	1.9	28

#	Article	IF	CITATIONS
145	Stereocopolyamides Derived from 2,3-Di-O-Methyl-d- and -l-Tartaric Acids and Hexamethylenediamine. 2. Influence of the Configurational Composition on the Crystal Structure of Optically Compensated Systems. Macromolecules, 1996, 29, 8413-8424.	2.2	27
146	Synergistic Computationalâ€Experimental Approach to Improve Ionene Polymerâ€Based Functional Hydrogels. Advanced Functional Materials, 2014, 24, 4893-4904.	7.8	27
147	Poly(\hat{l} ±-butyl \hat{l} 2-L-aspartate): A second alkoxycarbonyl nylon-3 derivative in helical conformation. Macromolecular Chemistry and Physics, 1995, 196, 253-268.	1.1	26
148	Helical Nylons 3. Synthesis and Crystal Structure of Poly(\hat{l}^2 -l-aspartate)s with Branched Alkyl Side Chains. Macromolecules, 1998, 31, 124-134.	2.2	26
149	Use of Constrained Synthetic Amino Acids in \hat{I}^2 -Helix Proteins for Conformational Control. Journal of Physical Chemistry B, 2007, 111, 3236-3242.	1.2	26
150	Computer simulation of dendronized polymers: organization and characterization at the atomistic level. RSC Advances, 2013, 3, 126-140.	1.7	26
151	Electroactive polymer–peptide conjugates for adhesive biointerfaces. Biomaterials Science, 2015, 3, 1395-1405.	2.6	26
152	Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites. Soft Matter, 2016, 12, 5475-5488.	1.2	26
153	Poly-Î ³ -glutamic Acid Hydrogels as Electrolyte for Poly(3,4-ethylenedioxythiophene)-Based Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 3182-3193.	1.5	26
154	Sustainable synthesis of amino acids by catalytic fixation of molecular dinitrogen and carbon dioxide. Green Chemistry, 2018, 20, 685-693.	4.6	26
155	Encapsulation and Storage of Therapeutic Fibrin-Homing Peptides using Conducting Polymer Nanoparticles for Programmed Release by Electrical Stimulation. ACS Biomaterials Science and Engineering, 2020, 6, 2135-2145.	2.6	26
156	A new scaling procedure to correct semiempirical MEP and MEP-derived properties. Journal of Computer-Aided Molecular Design, 1993, 7, 721-742.	1.3	25
157	Characterization and properties of a polythiophene with a malonic acid dimethyl ester side group. European Polymer Journal, 2009, 45, 2211-2221.	2.6	25
158	Controlled Isomerization of a Light-Driven Molecular Motor: A Theoretical Study. Journal of Physical Chemistry C, 2009, 113, 3574-3580.	1.5	25
159	Poly(3,4-ethylenedioxythiophene) on self-assembled alkanethiol monolayers for corrosion protection. Polymer Chemistry, 2011, 2, 2548.	1.9	25
160	Multifunctional coatings based on silicone matrix and propolis extract. Progress in Organic Coatings, 2018, 123, 223-231.	1.9	25
161	Effects of Aqueous and Organic Solvents on the Conformational Properties of the Helix-Forming α-Methyl-β-l-aspartamyl Residue. Journal of Organic Chemistry, 1996, 61, 6849-6855.	1.7	24
162	Conformational profile of 1-aminocyclopropanecarboxylic acid. Theoretical Chemistry Accounts, 2000, 103, 380-389.	0.5	24

#	Article	IF	CITATIONS
163	Backbone Conformational Preferences and Pseudorotational Ring Puckering of 1-Aminocyclopentane-1-carboxylic Acid. Journal of Physical Chemistry B, 2006, 110, 21264-21271.	1.2	24
164	Intrinsic Conformational Characteristics of $\hat{l}_{\pm},\hat{l}_{\pm}$ -Diphenylglycine. Journal of Organic Chemistry, 2007, 72, 2174-2181.	1.7	24
165	Self-Assembly of a Designed Amyloid Peptide Containing the Functional Thienylalanine Unit. Journal of Physical Chemistry B, 2010, 114, 10674-10683.	1.2	24
166	Preparation and characterization of semiconducting polymeric blends. Photochemical synthesis of poly(3-alkylthiophenes) using host microporous matrices of poly(vinylidene fluoride). Polymer Chemistry, 2012, 3, 1334.	1.9	24
167	Polythiophene-g-poly(ethylene glycol) graft copolymers for electroactive scaffolds. Journal of Materials Chemistry B, 2013, 1, 4135.	2.9	24
168	Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane. Polymer Chemistry, 2014, 5, 1248-1257.	1.9	24
169	Synergistic Approach to Elucidate the Incorporation of Magnesium lons into Hydroxyapatite. Chemistry - A European Journal, 2015, 21, 2537-2546.	1.7	24
170	The mechanism of adhesion and graft polymerization of a PNIPAAm thermoresponsive hydrogel to polypropylene meshes. Soft Matter, 2019, 15, 3432-3442.	1.2	24
171	Molecular conformational analyses of dehydroalanine analogues. Biopolymers, 1995, 36, 71-82.	1.2	23
172	Conformational Analysis of a Cyclopropane Analogue of Phenylalanine with Two Geminal Phenyl Substituents. Journal of Physical Chemistry B, 2006, 110, 5762-5766.	1.2	23
173	Conformations of Proline Analogues Having Double Bonds in the Ring. Journal of Physical Chemistry B, 2007, 111, 5475-5482.	1.2	23
174	Conducting poly(3,4-ethylenedioxythiophene)-montmorillonite exfoliated nanocomposites. European Polymer Journal, 2010, 46, 977-983.	2.6	23
175	Modeling the Tetraphenylalanine-PEG Hybrid Amphiphile: From DFT Calculations on the Peptide to Molecular Dynamics Simulations on the Conjugate. Journal of Physical Chemistry B, 2011, 115, 8937-8946.	1.2	23
176	Intermolecular interactions in electron transfer through stretched helical peptides. Physical Chemistry Chemical Physics, 2012, 14, 10332.	1.3	23
177	Transport and antifouling properties of papain-based antifouling coatings. Applied Surface Science, 2015, 341, 75-85.	3.1	23
178	Nanoperforations in poly(lactic acid) free-standing nanomembranes to promote interactions with cell filopodia. European Polymer Journal, 2016, 75, 552-564.	2.6	23
179	The biocompatible polythiophene-g-polycaprolactone copolymer as an efficient dopamine sensor platform. Polymer Chemistry, 2017, 8, 6112-6122.	1.9	22
180	Loading of Antibiotic into Biocoated Hydroxyapatite Nanoparticles: Smart Antitumor Platforms with Regulated Release. ACS Biomaterials Science and Engineering, 2018, 4, 3234-3245.	2.6	22

#	Article	IF	Citations
181	Tailoring the self-assembly of a tripeptide for the formation of antimicrobial surfaces. Nanoscale, 2019, 11, 8752-8759.	2.8	22
182	Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable. Advanced Functional Materials, 2020, 30, 2004145.	7.8	22
183	Comparison between Diketones and Diamides:Â Effects of Carbonyl Groups on the Conformational Preferences of Small Aliphatic Segments. The Journal of Physical Chemistry, 1996, 100, 16131-16136.	2.9	21
184	Effect of the side group on the helix-forming tendency of \hat{l} ±-alkyl- \hat{l} 2-L-aspartamyl residues. Biopolymers, 1997, 41, 721-729.	1.2	21
185	Copolymers of 3,4-Ethylenedioxythiophene and 3-Methylthiophene: Properties, Applications and Morphologies. Macromolecular Materials and Engineering, 2007, 292, 85-94.	1.7	21
186	Water absorption in polyaniline emeraldine base. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1322-1331.	2.4	21
187	Improving the corrosion performance of hybrid sol–gel matrix by modification with phosphonic acid. Progress in Organic Coatings, 2015, 80, 49-58.	1.9	21
188	Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates. ChemPhysChem, 2018, 19, 1746-1755.	1.0	21
189	Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides. Molecules, 2020, 25, 6037.	1.7	21
190	Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners. ACS Sustainable Chemistry and Engineering, 2022, 10, 2708-2719.	3.2	21
191	On the suitability of semiempirical calculations as sources of force field parameters. Journal of Computer-Aided Molecular Design, 1992, 6, 331-348.	1.3	20
192	Chain conformation in polyretropeptides III: Design of a 310 helix using \hat{l}_{\pm} , \hat{l}_{\pm} -dialkylated amino acids and retropeptide bonds. , 1997, 29, 575-582.		20
193	From peptide-based material science to protein fibrils: discipline convergence in nanobiology. Physical Biology, 2006, 3, S80-S90.	0.8	20
194	Concepts and schemes for the re-engineering of physical protein modules: generating nanodevices via targeted replacements with constrained amino acids. Physical Biology, 2006, 3, S54-S62.	0.8	20
195	Morphology and structure of poly(p-dioxanone). European Polymer Journal, 2007, 43, 4662-4674.	2.6	20
196	A First Principle Analysis of the Structure of Oligoanilines Doped with Alkylsulfonic Acids. Journal of Physical Chemistry A, 2009, 113, 8795-8800.	1.1	20
197	Computer Simulation of Fifth Generation Dendronized Polymers: Impact of Charge on Internal Organization. Journal of Physical Chemistry B, 2013, 117, 6007-6017.	1.2	20
198	Determination of New Cu ⁺ , Cu ²⁺ , and Zn ²⁺ Lennard-Jones Ion Parameters in Acetonitrile. Journal of Physical Chemistry B, 2013, 117, 10513-10522.	1.2	20

#	Article	IF	CITATIONS
199	A single-residue substitution inhibits fibrillization of Ala-based pentapeptides. A spectroscopic and molecular dynamics investigation. Soft Matter, 2014, 10, 2508.	1.2	20
200	Polypyrrole-Supported Membrane Proteins for Bio-Inspired Ion Channels. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1632-1643.	4.0	20
201	Clay incorporation at the dielectric layer of multilayer polymer films for electrochemical activation. European Polymer Journal, 2015, 69, 296-307.	2.6	20
202	Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds. Polymer Chemistry, 2015, 6, 925-937.	1.9	20
203	Amphiphilic polypyrrole-poly(Schiff base) copolymers with poly(ethylene glycol) side chains: synthesis, properties and applications. Polymer Chemistry, 2018, 9, 4218-4232.	1.9	20
204	Self-Assembly of Lipopeptides Containing Short Peptide Fragments Derived from the Gastrointestinal Hormone PYY _{3â€"36} : From Micelles to Amyloid Fibrils. Journal of Physical Chemistry B, 2019, 123, 614-621.	1.2	20
205	Structure of the Extended Crystal Forms of Nylon-6. Macromolecules, 2000, 33, 5754-5756.	2.2	19
206	Theoretical Investigation on the Rotational Isomerism of Calix[4]arenes: Influence of the Hydroxyl â†' Methoxy Replacement. Journal of Physical Chemistry A, 2005, 109, 8049-8054.	1.1	19
207	Application of 1-Aminocyclohexane Carboxylic Acid to Protein Nanostructure Computer Design. Journal of Chemical Information and Modeling, 2008, 48, 333-343.	2.5	19
208	Structural Analysis of a \hat{l}^2 -Helical Protein Motif Stabilized by Targeted Replacements with Conformationally Constrained Amino Acids. Journal of Physical Chemistry B, 2008, 112, 13101-13115.	1.2	19
209	Characterization and Properties of Poly[<i>N</i> â€(2â€cyanoethyl)pyrrole]. Macromolecular Chemistry and Physics, 2010, 211, 1663-1672.	1.1	19
210	Marine-friendly antifouling coating based on the use of a fatty acid derivative as a pigment. Materials Research, 2014, 17, 720-727.	0.6	19
211	Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds. RSC Advances, 2014, 4, 15245.	1.7	19
212	The influence of organophosphonic acid and conducting polymer on the adhesion and protection of epoxy coating on aluminium alloy. Progress in Organic Coatings, 2015, 88, 181-190.	1.9	19
213	Smart Paint for anodic protection of steel. Progress in Organic Coatings, 2015, 78, 116-123.	1.9	19
214	A quantum-mechanical study of the chain-length dependent stability of the extended and 310-helix conformations in dehydroalanine oligopeptides. Journal of Computer-Aided Molecular Design, 1994, 8, 441-448.	1.3	18
215	Toward an Understanding of the Drugâ 'DNA Recognition Mechanism. Hydrogen-Bond Strength in Netropsinâ 'DNA Complexes. The Journal of Physical Chemistry, 1996, 100, 11480-11487.	2.9	18
216	PAPQMD parametrization of molecular systems with cyclopropyl rings: conformational study of homopeptides constituted by 1-aminocyclopropane-1-carboxylic acid. Journal of Computer-Aided Molecular Design, 1998, 12, 259-273.	1.3	18

#	Article	IF	CITATIONS
217	On the Crystal Structure of Poly(\hat{l} ±-benzyl \hat{l} 3,dl-glutamate) of Microbial Origin. Macromolecules, 2002, 35, 8774-8780.	2.2	18
218	Computational study of the conformational preferences of the (R)-8-amino-pentacyclo [5.4.0.02,6.03,10.05,9] undecane-8-carboxylic acid monopeptide. Journal of Peptide Science, 2004, 10, 274-284.	0.8	18
219	A density functional theory study of n-doped 3,4-ethylenedioxythiophene oligomers. Chemical Physics Letters, 2004, 386, 408-413.	1.2	18
220	Changing the Charge Distribution of \hat{l}^2 -Helical-Based Nanostructures Can Provide the Conditions for Charge Transfer. Biophysical Journal, 2007, 93, 245-253.	0.2	18
221	On the structural and electronic properties of poly(3-thiophen-3-yl-acrylic acid methyl ester). Polymer, 2007, 48, 6955-6964.	1.8	18
222	Binding of Cationic Conjugated Polymers to DNA: Atomistic Simulations of Adducts Involving the Dickerson's Dodecamer. Biomacromolecules, 2011, 12, 1298-1304.	2.6	18
223	Microstructures of poly(N-methylpyrrole) and their interaction with morphine. Electrochimica Acta, 2011, 56, 5836-5843.	2.6	18
224	New insights into the characterization of poly(3-chlorothiophene) for electrochromic devices. Polymer Chemistry, 2012, 3, 436-449.	1.9	18
225	Electrically Polarized Hydroxyapatite: Influence of the Polarization Process on the Microstructure and Properties. Langmuir, 2019, 35, 14782-14790.	1.6	18
226	Phage-Display-Derived Peptide Binds to Human CD206 and Modeling Reveals a New Binding Site on the Receptor. Journal of Physical Chemistry B, 2019, 123, 1973-1982.	1,2	18
227	Controlled Anisotropic Growth of Hydroxyapatite by Additive-Free Hydrothermal Synthesis. Crystal Growth and Design, 2021, 21, 748-756.	1.4	18
228	A Biosourced Epoxy Resin for Adhesive Thermoset Applications. ChemSusChem, 2022, 15, .	3.6	18
229	Conformations of Nylons 1,n According to the Number of Methylene Carbons. Macromolecules, 1994, 27, 4298-4303.	2.2	17
230	Effect of the Folding of Methylene Units in the Conformational Preferences of Small Diesters. Journal of Organic Chemistry, 1997, 62, 3076-3080.	1.7	17
231	Conformation and Crystal Structure of Poly(\hat{l} ±-cycloalkyl- \hat{l} 2- l -aspartate)s. Journal of Physical Chemistry A, 1997, 101, 4215-4223.	1.1	17
232	Molecular packing and conformational behaviour of poly (\hat{l}^2 - l -aspartate)s containing medium size linear alkyl side-chain. Polymer, 1997, 38, 3477-3484.	1.8	17
233	Relative stability between the \hat{l}_{\pm} and \hat{l}_{\pm}^3 forms of even nylons based on group contributions. European Polymer Journal, 1999, 35, 835-847.	2.6	17
234	A quantum mechanical study of the ionic interactions in model compounds of polyelectrolite–surfactant complexes derived from polypeptides. Chemical Physics Letters, 2000, 319, 318-326.	1,2	17

#	Article	IF	CITATIONS
235	Fluorescein isothiocyanate: Molecular characterization by theoretical calculations. Chemical Physics, 2008, 354, 155-161.	0.9	17
236	Influence of the dye presence on the conformational preferences of CREKA, a tumor homing linear pentapeptide. Biopolymers, 2009, 92, 83-93.	1.2	17
237	Transport of Metallic Ions through Polyaniline-Containing Composite Membranes. Journal of Chemical & Chemical	1.0	17
238	Electronic properties of poly(thiophene-3-methyl acetate). Journal of Polymer Research, 2011, 18, 1509-1517.	1.2	17
239	Different properties for poly(3,4â€ethylenedioxythiophene) films derived from single or multiple polymerization steps. Journal of Applied Polymer Science, 2011, 121, 1982-1991.	1.3	17
240	Molecular insights into aggregates made of amphiphilic Fmoc-tetrapeptides. Soft Matter, 2013, 9, 11021.	1.2	17
241	Fmoc–RGDS based fibrils: atomistic details of their hierarchical assembly. Physical Chemistry Chemical Physics, 2016, 18, 1265-1278.	1.3	17
242	Effect of Solvent Choice on the Selfâ€Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair. ChemPhysChem, 2017, 18, 1888-1896.	1.0	17
243	Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacitors. Polymers, 2021, 13, 1337.	2.0	17
244	Preferences of the Oxalamide and Hydrazide Moieties in Vacuum and Aqueous Solution. A Comparison with the Amide Functionality. Journal of Organic Chemistry, 1999, 64, 351-358.	1.7	16
245	Optically active polyamides containing 1,3-dioxolane cycles in the backbone. Polymer, 2000, 41, 4869-4879.	1.8	16
246	On the Crystalline Structure of Even Polyoxalamides. Macromolecules, 2002, 35, 8781-8787.	2.2	16
247	On the Protonation Equilibrium for the Benzimidazole Derivative Hoechst 33258: An Electronic Molecular Orbital Study. Journal of Biomolecular Structure and Dynamics, 2002, 20, 301-310.	2.0	16
248	Performance of SuSi: A method for generating atomistic models of amorphous polymers based on a random search of energy minima. Journal of Computational Chemistry, 2004, 25, 790-798.	1.5	16
249	Analysis of the oxalamide functionality as hydrogen bonding former: geometry, energetics, cooperative effects, NMR chemical characterization and implications in molecular engineering. Computational and Theoretical Chemistry, 2004, 675, 9-17.	1.5	16
250	Impact of the Solvent on the Conformational Isomerism of Calix[4]arenes:Â A Study Based on Continuum Solvation Models. Journal of Organic Chemistry, 2004, 69, 951-958.	1.7	16
251	Thermal Stability of the Secondary Structure of Poly($\hat{l}\pm$,l-glutamate) in Self-Assembled Complexes as Studied by Molecular Dynamics in Chloroform Solution. Journal of the American Chemical Society, 2004, 126, 704-705.	6.6	16
252	Solvation of 2,2′-bithiophene: Influence of the first solvation shell in the properties of π-conjugated systems. Chemical Physics Letters, 2005, 416, 331-335.	1.2	16

#	Article	IF	CITATIONS
253	Identification of the intrinsic conformational properties of 1-aminocyclobutane-1-carboxylic acid. Chemical Physics Letters, 2006, 429, 558-562.	1.2	16
254	<i>In Silico</i> Molecular Engineering for a Targeted Replacement in a Tumor-Homing Peptide. Journal of Physical Chemistry B, 2009, 113, 7879-7889.	1.2	16
255	Influence of the Doping Level on the Interactions between Poly(3,4â€ethylenedioxythiophene) and Plasmid DNA. Macromolecular Chemistry and Physics, 2010, 211, 1117-1126.	1.1	16
256	Water Absorbed by Polyaniline Emeraldine Tends to Organize, Forming Nanodrops. Journal of Physical Chemistry B, 2012, 116, 7342-7350.	1.2	16
257	Transport of hydronium ions inside poly(styrene-co-divinyl benzene) cation exchange membranes. Journal of Membrane Science, 2013, 428, 393-402.	4.1	16
258	Nanometric ultracapacitors fabricated using multilayer of conducting polymers on self-assembled octanethiol monolayers. Organic Electronics, 2013, 14, 1483-1495.	1.4	16
259	Capacitive Composites Made of Conducting Polymer and Lysozyme: Toward the Biocondenser. Journal of Physical Chemistry C, 2013, 117, 6607-6619.	1.5	16
260	Interactions in dendronized polymers: intramolecular dominates intermolecular. Soft Matter, 2014, 10, 1032.	1.2	16
261	How Organophosphonic Acid Promotes Silane Deposition onto Aluminum Surface: A Detailed Investigation on Adsorption Mechanism. Journal of Physical Chemistry C, 2014, 118, 17724-17736.	1.5	16
262	Confinement of a \hat{l}^2 -barrel protein in nanoperforated free-standing nanomembranes for ion transport. Nanoscale, 2016, 8, 16922-16935.	2.8	16
263	Plasma functionalized surface of commodity polymers for dopamine detection. Applied Surface Science, 2017, 399, 638-647.	3.1	16
264	An amphiphilic, heterografted polythiophene copolymer containing biocompatible/biodegradable side chains for use as an (electro)active surface in biomedical applications. Polymer Chemistry, 2019, 10, 5010-5022.	1.9	16
265	Electrochemical Sensor for Bacterial Metabolism Based on the Detection of NADH by Polythiophene Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 22181-22190.	1.5	16
266	Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein. Computational and Structural Biotechnology Journal, 2021, 19, 1848-1862.	1.9	16
267	Study on the electrochromic properties of polypyrrole layers doped with different dye molecules. Journal of Electroanalytical Chemistry, 2021, 886, 115113.	1.9	16
268	Regulating the Superficial Vacancies and OH ^{â^'} Orientations on Polarized Hydroxyapatite Electrocatalysts. Advanced Materials Interfaces, 2021, 8, 2100163.	1.9	16
269	A conformational study of the dehydroalanine: Dipeptide and homopolypeptide. Biopolymers, 1993, 33, 1811-1817.	1.2	15
270	Multicentric charges for the accurate representation of electrostatic interactions in force-field calculations for small molecules. Chemical Physics, 1994, 189, 573-584.	0.9	15

#	Article	IF	CITATIONS
271	Effects of electron correlation and the environment on the conformational preferences of the \hat{l}^2 -alanine dipeptide. Computational and Theoretical Chemistry, 2000, 505, 211-219.	1.5	15
272	On the Phase B of Comb-Like Poly(\hat{l} ±-alkyl- \hat{l} 2-L-aspartate)s: A Simulation of the Solubility of Small Penetrants. Macromolecular Chemistry and Physics, 2001, 202, 564-573.	1.1	15
273	Molecular Dynamics Simulations of Surfactant·Poly($\hat{l}\pm$,l-glutamate) Complexes in Chloroform Solution: Influence of the Chemical Constitution of the Surfactant in the Molecular Organization. Langmuir, 2003, 19, 3987-3995.	1.6	15
274	Reliability of the density functional approximation to describe the charge transfer and electrostatic complexes involved in the modeling of organic conducting polymers. Physical Review E, 2005, 72, 026704.	0.8	15
275	Application of multilayered particles formed by poly(3,4â€ethylenedioxythiophene) and poly(<i>N</i> à€methylpyrrole) as antiâ€corrosive additives of conventional organic coatings. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 867-872.	0.8	15
276	Correlation between symmetry breaker position and the preferences of conformationally constrained homopeptides: A molecular dynamics investigation. Biopolymers, 2008, 90, 695-706.	1.2	15
277	Effect of the environment and role of the Ï€â€Ï€ stacking interactions in the stabilization of the 3 ₁₀ â€helix conformation in dehydroalanine oligopeptides. International Journal of Peptide and Protein Research, 1995, 46, 408-418.	0.1	15
278	Structural and Electronic Properties of Poly(thiaheterohelicene)s. Journal of Physical Chemistry B, 2009, 113, 15196-15203.	1.2	15
279	Properties of nanometric and micrometric multilayered films made of three conducting polymers. European Polymer Journal, 2010, 46, 2222-2228.	2.6	15
280	Conformational Preferences of Proline Analogues with a Fused Benzene Ring. Journal of Physical Chemistry B, 2010, 114, 11761-11770.	1.2	15
281	Controlling the Morphology of Poly(<i>N</i> -cyanoethylpyrrole). Journal of Physical Chemistry B, 2012, 116, 5064-5070.	1.2	15
282	A Conducting Polymer/Protein Composite with Bactericidal and Electroactive Properties. Macromolecular Materials and Engineering, 2012, 297, 427-436.	1.7	15
283	Resolving the subnanometric structure of ultrathin films of poly(3,4-ethylenedioxythiophene) on steel surfaces: a molecular modeling approach. Soft Matter, 2013, 9, 11634.	1.2	15
284	Peptide δâ€Turn: Literature Survey and Recent Progress. Chemistry - A European Journal, 2015, 21, 13866-13877.	1.7	15
285	An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles. Dalton Transactions, 2015, 44, 9980-9991.	1.6	15
286	Nanometric polythiophene films with electrocatalytic activity for non-enzymatic detection of glucose. European Polymer Journal, 2016, 79, 132-139.	2.6	15
287	Plasmaâ€treated polyethylene as electrochemical mediator for enzymatic glucose sensors: Toward bifunctional glucose and dopamine sensors. Plasma Processes and Polymers, 2018, 15, 1700133.	1.6	15
288	Semiconducting, biodegradable and bioactive fibers for drug delivery. EXPRESS Polymer Letters, 2016, 10, 628-646.	1.1	15

#	Article	lF	Citations
289	Perchloro-2-methylnaphthalene, a Novel Chlorocarbon with a Highly Strained Structure. Journal of Organic Chemistry, 1995, 60, 2721-2725.	1.7	14
290	Intrinsic Conformational Preferences of the Hoechst Dye Family and their Influence on DNA Binding. FEBS Journal, 1996, 239, 376-383.	0.2	14
291	Theoretical representation of solvent effects in the study of biochemical systems. Computational and Theoretical Chemistry, 1996, 371, 269-278.	1.5	14
292	Conformational preferences of flavone and isoflavone in the gas phase, aqueous solution and organic solution. Chemical Physics Letters, 1998, 287, 579-584.	1.2	14
293	Structural Versatility of Oxalamide-Based Compounds:Â A Computational Study on the Isomerization of the Oxalamide Group and the Structural Preferences of the Polyoxalamides. Journal of Organic Chemistry, 2001, 66, 8076-8085.	1.7	14
294	A Computational Study of Partially Modified Retro-Inverso Valine Dipeptides:  Effect of the Side Chain on the Conformational Preferences of Malonyl and gem-Diamino Residues. Journal of Physical Chemistry B, 2001, 105, 860-866.	1.2	14
295	A Computational Study of Neutral and Charged Pyrroles. Functionalization of 1-Phenylpyrrole and 2,5-Dimethyl-1-phenylpyrrole with Electron Donating Methylsulfanyl Groups. Journal of Physical Chemistry A, 2001, 105, 5266-5271.	1.1	14
296	MCDP: an advanced tool to simulate comb-like polymers. Journal of Computational Chemistry, 2001, 22, 162-171.	1.5	14
297	N-Amination of Peptides:  A Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 1441-1449.	1.1	14
298	A molecular dynamics study of the stoichiometric complex formed by poly (\hat{l}_{\pm} ,L-glutamate) and octyltrimethylammonium ions in chloroform solution. Biopolymers, 2002, 63, 151-162.	1.2	14
299	Systematic Evaluation of the Conformational Properties of Aliphatic ω-Hydroxy Acids. Journal of Organic Chemistry, 2005, 70, 2950-2956.	1.7	14
300	Conformational Isomerism of Electroactive Calix[4]arenes:Â Influence of the Electronic State in the Flexibility of Thiophene-Containing Calix[4]arene. Journal of Organic Chemistry, 2006, 71, 6952-6957.	1.7	14
301	Conformational Preferences of \hat{l}^2 - and \hat{l}^3 -Aminated Proline Analogues. Journal of Physical Chemistry B, 2008, 112, 14045-14055.	1.2	14
302	Protein Segments with Conformationally Restricted Amino Acids Can Control Supramolecular Organization at the Nanoscale. Journal of Chemical Information and Modeling, 2009, 49, 1623-1629.	2.5	14
303	Field-Induced Transport in Sulfonated Poly(styrene- <i>co</i> divinylbenzene) Membranes. Macromolecules, 2010, 43, 10521-10527.	2.2	14
304	Engineering strategy to improve peptide analogs: from structure-based computational design to tumor homing. Journal of Computer-Aided Molecular Design, 2013, 27, 31-43.	1.3	14
305	Aromatic ionene topology and counterion-tuned gelation of acidic aqueous solutions. Soft Matter, 2017, 13, 3031-3041.	1.2	14
306	Dualâ€Functionalization Device for Therapy through Dopamine Release and Monitoring. Macromolecular Bioscience, 2018, 18, e1800014.	2.1	14

#	Article	lF	Citations
307	The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. Journal of Physical Chemistry B, 2018, 122, 1826-1835.	1.2	14
308	Electrochromic Self-Electrostabilized Polypyrrole Films Doped with Surfactant and Azo Dye. Polymers, 2019, 11, 1757.	2.0	14
309	Antimicrobial activity of poly(3,4-ethylenedioxythiophene) n-doped with a pyridinium-containing polyelectrolyte. Soft Matter, 2019, 15, 7695-7703.	1.2	14
310	Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability. Journal of Materials Chemistry B, 2020, 8, 8864-8877.	2.9	14
311	Permanently polarized hydroxyapatite for selective electrothermal catalytic conversion of carbon dioxide into ethanol. Chemical Communications, 2021, 57, 5163-5166.	2.2	14
312	SCF-MO study of the preferred conformation of a symmetric malonamide derivative: N,N' -dimethyl malonamide. Computational and Theoretical Chemistry, 1993, 285, 221-227.	1.5	13
313	Structure of Nylon 46 Lamellar Crystals:  An Investigation Including Adjacent Chain Folding. Macromolecules, 2000, 33, 8756-8763.	2.2	13
314	Binding in complex ionic systems: anticooperative effects in systems stabilized by electrostatic interactions. Chemical Physics Letters, 2001, 343, 390-396.	1.2	13
315	Permeation Properties of the Stereoregular Nylon-3 Analogue, Poly(α-hexyl β-l-aspartate). Macromolecules, 2002, 35, 4521-4530.	2.2	13
316	Theoretical strategy to provide atomistic models of comblike polymers: A generation algorithm combined with configurational bias Monte Carlo. Journal of Chemical Physics, 2004, 121, 9744-9752.	1.2	13
317	Acid-Base and Electronic Structure-Dependent Properties of Hoechst 33342. Journal of Biomolecular Structure and Dynamics, 2005, 23, 29-36.	2.0	13
318	Sensing Abilities of Crown Ether Functionalized Polythiophenes. Chemistry - A European Journal, 2009, 15, 4676-4684.	1.7	13
319	Computer simulations of amorphous polymers: From quantum mechanical calculations to mesoscopic models. Computational and Theoretical Chemistry, 2009, 898, 62-72.	1.5	13
320	Binding of 6-mer single-stranded homo-nucleotides to poly(3,4-ethylenedioxythiophene): specific hydrogen bonds with guanine. Soft Matter, 2011, 7, 9922.	1.2	13
321	Dextrin―and Conductingâ€Polymerâ€Containing Biocomposites: Properties and Behavior as Cellular Matrix. Macromolecular Materials and Engineering, 2012, 297, 359-368.	1.7	13
322	Atomistic organization and characterization of tube-like assemblies comprising peptide–polymer conjugates: computer simulation studies. Faraday Discussions, 2013, 166, 59.	1.6	13
323	Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold. Chemistry - A European Journal, 2016, 22, 6631-6636.	1.7	13
324	Corrosion rate evaluation by gravimetric and electrochemical techniques applied to the metallic reinforcing structures of a historic building. Journal of Cultural Heritage, 2017, 27, 153-163.	1.5	13

#	Article	IF	CITATIONS
325	Cell Responses to Electrical Pulse Stimulation for Anticancer Drug Release. Materials, 2019, 12, 2633.	1.3	13
326	Main-chain scission of individual macromolecules induced by solvent swelling. Chemical Science, 2019, 10, 6125-6139.	3.7	13
327	Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. Soft Matter, 2019, 15, 2722-2736.	1.2	13
328	A molecular dynamics study on glucose molecular recognition by a non-enzymatic selective sensor based on a conducting polymer. Physical Chemistry Chemical Physics, 2019, 21, 8099-8107.	1.3	13
329	Tuning multilayered polymeric self-standing films for controlled release of L-lactate by electrical stimulation. Journal of Controlled Release, 2021, 330, 669-683.	4.8	13
330	Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid). Applied Surface Science, 2022, 597, 153623.	3.1	13
331	Spatial extension of the bipolaronic defect in highly conducting polymers based on five-membered aromatic rings. Macromolecular Theory and Simulations, 1997, 6, 237-245.	0.6	12
332	Molecular simulation of gas solubilities in crystalline poly(\hat{l}_{\pm} -alkyl- \hat{l}^{2} -?-aspartate)s. Polymer, 2000, 41, 4169-4177.	1.8	12
333	Computer experiments on crystalline nylons: structural analysis of nylons with large aliphatic segments. Colloid and Polymer Science, 2004, 282, 535-543.	1.0	12
334	A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of \hat{l}_{\pm} -tetrathiophene. Chemical Physics, 2005, 314, 1-7.	0.9	12
335	A theoretical study of the effects produced by N-hydroxyalkyl substitution in pyrrole oligomers. Synthetic Metals, 2005, 151, 239-245.	2.1	12
336	Conformational Features of an Actuator Containing Calix[4]arene and Thiophene:Â A Molecular Dynamics Study. Journal of Physical Chemistry B, 2006, 110, 9876-9881.	1.2	12
337	Coarse-grained simulations of amorphous and melted polyethylene. Chemical Physics Letters, 2007, 436, 189-193.	1.2	12
338	Structural and electronic properties of poly(3-thiophen-3-yl-acrylic acid). Polymer, 2008, 49, 1972-1980.	1.8	12
339	Specific interactions in complexes formed by polythiophene derivatives bearing polar side groups and plasmid DNA. European Polymer Journal, 2008, 44, 3700-3707.	2.6	12
340	Helical Dendronized Polymers with Chiral Second-Generation Dendrons: Atomistic View and Driving Forces for Structure Formation. Journal of Physical Chemistry B, 2009, 113, 14868-14876.	1.2	12
341	Modeling of Amorphous Polyaniline Emeraldine Base. Journal of Physical Chemistry B, 2010, 114, 9771-9777.	1.2	12
342	The fullyâ€extended conformation in peptides and proteins. Peptide Science, 2018, 110, e23100.	1.0	12

#	Article	IF	Citations
343	Designing Stainless Steel Surfaces with Antiâ€Pitting Properties Applying Laser Ablation and Organofluorine Coatings. Advanced Engineering Materials, 2018, 20, 1700814.	1.6	12
344	Thermomechanical Response of a Representative Porin for Biomimetics. ACS Omega, 2018, 3, 7856-7867.	1.6	12
345	Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. Journal of Catalysis, 2020, 389, 646-656.	3.1	12
346	Enhanced CO ₂ Conversion into Ethanol by Permanently Polarized Hydroxyapatite through Câ^'C Coupling. ChemCatChem, 2021, 13, 5025-5033.	1.8	12
347	Molecular mechanics and molecular dynamics simulations of the hexagonal crystalline form of the helical polyamide poly(α-isobutyl-l-aspartate). Polymer, 1994, 35, 2596-2599.	1.8	11
348	Thallium(III) Trifluoroacetate-Trifluoroacetic Acid in the Chemistry of Polythiophenes. 1. Polymers from 2,2'-Bithiophene and 2,2',5',2''-Terthiophene. Mechanistic Aspects. Journal of Organic Chemistry, 1994, 59, 4630-4636.	1.7	11
349	Chain conformation in polyretropeptides: Quantum mechanical and empirical force field calculations on 2,6,8-trioxo-3,5,9-triazadecane, a model compound for poly(retro-glycine). Biopolymers, 1995, 35, 257-269.	1.2	11
350	Helix Sense in Poly(β-alkyl α-l-aspartate)s. Macromolecules, 1997, 30, 6662-6667.	2.2	11
351	Theoretical study of the conformational and electrostatic properties of C4-monosubstituted 2-azetidinones. Structural Chemistry, 1997, 8, 39-47.	1.0	11
352	Crystallographic and Quantum Mechanical Results on $\hat{\Gamma}$ [NHCO] Aliphatic Diamides. The Number of Methylenes Strongly Influences Their Structural and Conformational Properties. Macromolecules, 1998, 31, 408-416.	2.2	11
353	The crystal structure of nylon 3,5 and nylon 5,7: a comparative study. Macromolecular Chemistry and Physics, 1999, 200, 2065-2073.	1.1	11
354	Monte Carlo structural investigation of helical poly(\hat{l}^2 - l -aspartate)s containing linear alkyl side chains. Computational and Theoretical Polymer Science, 2000, 10, 177-187.	1.1	11
355	Acid/base properties of flavonoids hydroxylated at positions 2 and 3: a novel quantum mechanical study in gas-phase and solution. Computational and Theoretical Chemistry, 2000, 528, 65-73.	1.5	11
356	SYNTHESIS OF BENZOFURANOFURAN DERIVATIVES: MODEL OF NATURAL PRODUCTS. Synthetic Communications, 2001, 31, 151-154.	1.1	11
357	Generationâ^'Relaxation Algorithms to Construct Representative Atomistic Models of Amorphous Polymers:Â Influence of the Relaxation Method. Journal of Physical Chemistry B, 2004, 108, 20331-20339.	1.2	11
358	1-Amino-2-Phenylcyclopentane-1-carboxylic Acid:  A Conformationally Restricted Phenylalanine Analogue. Journal of Organic Chemistry, 2008, 73, 644-651.	1.7	11
359	SCFâ€MO study of the polyhydration of <i>N,N′</i> â€dimethylmalonamide. International Journal of Peptide and Protein Research, 1993, 41, 606-610.	0.1	11
360	Modeling an Electronic Conductor Based on Natural Peptide Sequences. Biomacromolecules, 2009, 10, 2338-2343.	2.6	11

#	Article	IF	CITATIONS
361	Microscopic details of the sensing ability of 15-crown-5-ether functionalized poly(bithiophene). Polymer, 2010, 51, 4267-4272.	1.8	11
362	Modeling the Structural and Electronic Properties of an Optically Active Regioregular Polythiophene. Journal of Physical Chemistry C, 2010, 114, 11074-11080.	1.5	11
363	NCAD, a Database Integrating the Intrinsic Conformational Preferences of Non-Coded Amino Acids. Journal of Physical Chemistry B, 2010, 114, 7413-7422.	1.2	11
364	Specific Interactions in Complexes Formed by DNA and Conducting Polymer Building Blocks: Guanine and 3,4-(Ethylenedioxy)thiophene. Journal of Physical Chemistry A, 2011, 115, 13642-13648.	1.1	11
365	Influence of polarity of the medium in the saturation of the electronic properties for π-conjugated oligothiophenes. Chemical Physics Letters, 2011, 511, 283-287.	1.2	11
366	Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene. Review of Scientific Instruments, 2013, 84, 053904.	0.6	11
367	Molecular characterization of l-phenylalanine terminated poly(l-lactide) conjugates. RSC Advances, 2014, 4, 23231.	1.7	11
368	Modeling Nanosized Single Molecule Objects: Dendronized Polymers Adsorbed onto Mica. Journal of Physical Chemistry C, 2015, 119, 3746-3753.	1.5	11
369	Soluble polythiophenes as anticorrosive additives for marine epoxy paints. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 23-30.	0.8	11
370	Prototyping flexible supercapacitors produced with biohydrogel. Materials Today Communications, 2018, 16, 60-70.	0.9	11
371	Free-Standing Faradaic Motors Based on Biocompatible Nanoperforated Poly(lactic Acid) Layers and Electropolymerized Poly(3,4-ethylenedioxythiophene). ACS Applied Materials & Interfaces, 2019, 11, 29427-29435.	4.0	11
372	Incorporation of Chloramphenicol Loaded Hydroxyapatite Nanoparticles into Polylactide. International Journal of Molecular Sciences, 2019, 20, 5056.	1.8	11
373	Recycled Low-Density Polyethylene for Noninvasive Glucose Monitoring: A Proposal for Plastic Recycling that Adds Technological Value. ACS Sustainable Chemistry and Engineering, 2020, 8, 12554-12560.	3.2	11
374	Heterochirality Restricts the Self-Assembly of Phenylalanine Dipeptides Capped with Highly Aromatic Groups. Journal of Physical Chemistry B, 2020, 124, 5913-5918.	1.2	11
375	Polymer infiltrated ceramic networks with biocompatible adhesive and 3D-printed highly porous scaffolds. Additive Manufacturing, 2021, 39, 101850.	1.7	11
376	Immobilization of glucose oxidase on plasma-treated polyethylene for non-invasive glucose detection. Journal of Electroanalytical Chemistry, 2021, 895, 115509.	1.9	11
377	Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42486-42501.	4.0	11
378	Conformational Study of a Nine Residue Fragment of the Antigenic Loop of Foot-and-Mouth Disease Virus. Journal of Biomolecular Structure and Dynamics, 1992, 10, 1-13.	2.0	10

#	Article	IF	CITATIONS
379	SCF-MO study of the polyglycine II structure. Journal of Computer-Aided Molecular Design, 1993, 7, 241-250.	1.3	10
380	Helical region of the potential energy surface of α-aminoisobutyric acid: A theoretical study. International Journal of Quantum Chemistry, 1993, 47, 231-238.	1.0	10
381	Molecular Structure and Proton Affinities of the 4H-1-Benzopyran-4-one Molecule and Its Hydroxylated Derivatives. Journal of Organic Chemistry, 1999, 64, 1768-1769.	1.7	10
382	A microscopic view of a helical poly(\hat{I}^3 -peptide): Molecular dynamics simulations of a 20-residue un-ionized poly(\hat{I}^3 -D-glutamic acid) in water. Macromolecular Theory and Simulations, 2000, 9, 543-549.	0.6	10
383	A Conformational Study of the \hat{l} ±-l-Aspartate-Containing Dipeptide. Journal of Physical Chemistry A, 2000, 104, 7612-7616.	1.1	10
384	EVEBAT: A fast strategy for the examination of the empty space in polymer matrices. Journal of Computational Chemistry, 2003, 24, 1208-1214.	1.5	10
385	DFT–GIAO study of aryltetralin lignan lactones: Conformational analyses and chemical shifts calculations. Bioorganic Chemistry, 2005, 33, 484-492.	2.0	10
386	Unusually High Pyramidal Geometry of the Bicyclic Amide Nitrogen in a Complex 7-Azabicyclo[2.2.1]heptane Derivative:  Theoretical Analysis Using a Bottom-up Strategy. Journal of Physical Chemistry B, 2005, 109, 11836-11841.	1.2	10
387	Polymers and oligomers derived from pyrrole and N-hydroxymethylpyrrole: A theoretical analysis of the structural and electronic properties. Polymer, 2006, 47, 3257-3262.	1.8	10
388	Stability of Tubular Structures Based on β-Helical Proteins:  Self-Assembled versus Polymerized Nanoconstructs and Wild-Type versus Mutated Sequences. Biomacromolecules, 2007, 8, 3135-3146.	2.6	10
389	Coarse-Grained Representation of \hat{l}^2 -Helical Protein Building Blocks. Journal of Physical Chemistry B, 2007, 111, 10538-10549.	1.2	10
390	Molecular Dynamics Study of Complexes of Poly(glutamate) and Dodecyltrimethylammonium. Biomacromolecules, 2007, 8, 663-671.	2.6	10
391	Copolymers of pyrrole and N-(hydroxypropyl)pyrrole: properties and interaction with DNA. Journal of Polymer Research, 2008, 15, 225-234.	1.2	10
392	Poly(3â€alkylthiophene)s as anticorrosive additive for paints: Influence of the main chain stereoregularity. Journal of Applied Polymer Science, 2008, 108, 3291-3297.	1.3	10
393	Intrinsic Conformational Preferences of $C < \sup \hat{l} \pm , \hat{l} \pm < \sup \rangle$ -Dibenzylglycine. Journal of Organic Chemistry, 2008, 73, 4205-4211.	1.7	10
394	Conformational study of alanine and αâ€aminoisobutyric Î⁻[NHCO]â€retroamide peptide analogues. International Journal of Peptide and Protein Research, 1994, 43, 258-263.	0.1	10
395	Electronic characterization of all-thiophene conducting dendrimers: Molecules and assemblies. Polymer, 2010, 51, 308-315.	1.8	10
396	From Poly(3,4-ethylenedioxythiophene) to Poly(3,4-phenylenedioxythiophene): Impact of the Substitution of the Ethylene Bridge by the Phenyl Ring on the Molecular Properties. Journal of Physical Chemistry B, 2010, 114, 3494-3499.	1.2	10

#	Article	IF	CITATIONS
397	A simulation strategy for the atomistic modeling of flexible molecules covalently tethered to rigid surfaces: Application to peptides. Journal of Computational Chemistry, 2011, 32, 607-619.	1.5	10
398	Synthesis and evaluation of a PVDF–PT3MA–Zn2SiO4:Mn hybrid polymeric composite for optical device applications. Journal of Materials Chemistry C, 2014, 2, 2502.	2.7	10
399	Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins. Soft Matter, 2015, 11, 2251-2267.	1.2	10
400	Amyloid-like Fibrils from a Diphenylalanine Capped with an Aromatic Fluorenyl. Langmuir, 2018, 34, 15551-15559.	1.6	10
401	Molecular dynamics simulations on self-healing behavior of ionene polymer-based nanostructured hydrogels. Polymer, 2020, 211, 123072.	1.8	10
402	Doped photo-crosslinked polyesteramide hydrogels as solid electrolytes for supercapacitors. Soft Matter, 2020, 16, 8033-8046.	1.2	10
403	Nanotheranostic Interface Based on Antibioticâ€Loaded Conducting Polymer Nanoparticles for Realâ€Time Monitoring of Bacterial Growth Inhibition. Advanced Healthcare Materials, 2021, 10, e2001636.	3.9	10
404	Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3Dâ€Printed Polylactic Acid. Advanced Engineering Materials, 2021, 23, 2100002.	1.6	10
405	Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. Journal of Catalysis, 2021, 397, 98-107.	3.1	10
406	Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors. ACS Biomaterials Science and Engineering, 2022, 8, 3329-3340.	2.6	10
407	PAPQMD/AM1 Parametrization of the bonded term of aromatic biomolecules. Biopolymers, 1994, 34, 941-955.	1.2	9
408	On the mechanical properties of poly(ethylene terephthalate). Force-field parametrization and conformational analysis for the prediction of the crystal moduli. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 963-973.	2.4	9
409	GEMOX: A simple and efficient strategy for the generation of polymer molecular models compatible with X-ray diffraction data. Polymer, 1996, 37, 2589-2595.	1.8	9
410	Intramolecular Electronic and Hydrogen-Bonding Interactions in N,Nâ€~-Dimethyl-2,3-di-O-methyl-l-tartaramide. Journal of Organic Chemistry, 1997, 62, 6562-6567.	1.7	9
411	Modeling of the ?-helix conformation of homopeptides constituted by ?-L-glutamic acid. Biopolymers, 1999, 49, 497-504.	1.2	9
412	Poly(\hat{I}^3 -glutamic acid) in Aqueous Solution: \hat{A} Molecular Dynamics Simulations of 10- and 20-Residue Chains at Different Temperatures. Biomacromolecules, 2001, 2, 651-657.	2.6	9
413	Comblike Poly(α-alkyl γ-glutamate)s: Computer Simulation Studies of an Intermediate Thermal Phase. Biomacromolecules, 2003, 4, 87-95.	2.6	9
414	Ester substitution in $2,2\hat{a}\in^2$ -bithiophene: Analyses of the changes induced in the structural and electronic properties. Synthetic Metals, 2006, 156, 602-609.	2.1	9

#	Article	IF	Citations
415	Testing \hat{l}^2 -helix terminal coils stability by targeted substitutions with non-proteogenic amino acids: A molecular dynamics study. Journal of Structural Biology, 2007, 160, 177-189.	1.3	9
416	Coarse-graining the Self-assembly of \hat{l}^2 -helical Protein Building Blocks. Journal of Physical Chemistry B, 2007, 111, 14006-14011.	1.2	9
417	Protonation of the Side Group in \hat{I}^2 - and \hat{I}^3 -Aminated Proline Analogues: Effects on the Conformational Preferences. Journal of Organic Chemistry, 2009, 74, 3101-3108.	1.7	9
418	Exploring the energy landscape of a molecular engineered analog of a tumor-homing peptide. Physical Chemistry Chemical Physics, 2011, 13, 9986.	1.3	9
419	Integrating the intrinsic conformational preferences of noncoded αâ€nmino acids modified at the peptide bond into the noncoded amino acids database. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1841-1852.	1.5	9
420	On the modeling of aggregates of an optically active regionegular polythiophene. Physical Chemistry Chemical Physics, 2012, 14, 1881.	1.3	9
421	Electroactive and bioactive films of random copolymers containing terthiophene, carboxyl and Schiff base functionalities in the main chain. Polymer Chemistry, 2015, 6, 4319-4335.	1.9	9
422	Solvatochromism of dye-labeled dendronized polymers of generation numbers 1–4: comparison to dendrimers. Chemical Science, 2016, 7, 4644-4652.	3.7	9
423	A multi-step template-assisted approach for the formation of conducting polymer nanotubes onto conducting polymer films. Polymer Chemistry, 2016, 7, 3540-3550.	1.9	9
424	Fibrin Association at Hybrid Biointerfaces Made of Clotâ€Binding Peptides and Polythiophene. Macromolecular Bioscience, 2016, 16, 1461-1474.	2.1	9
425	Cationic ionene as an n-dopant agent of poly(3,4-ethylenedioxythiophene). Physical Chemistry Chemical Physics, 2018, 20, 9855-9864.	1.3	9
426	Properties of Omp2a-Based Supported Lipid Bilayers: Comparison with Polymeric Bioinspired Membranes. ACS Omega, 2018, 3, 9003-9019.	1.6	9
427	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	1.1	9
428	Expanding the limits of amide–triazole isosteric substitution in bisamide-based physical gels. RSC Advances, 2019, 9, 20841-20851.	1.7	9
429	Perforated polyester nanomebranes as templates of electroactive and robust free-standing films. European Polymer Journal, 2019, 114, 213-222.	2.6	9
430	Biohydrogel from unsaturated polyesteramide: Synthesis, properties and utilization as electrolytic medium for electrochemical supercapacitors. Polymer Testing, 2020, 82, 106300.	2.3	9
431	Analysis of nitrogen fixation by a catalyst capable of transforming N2, CO2 and CH4 into amino acids under mild reactions conditions. Applied Catalysis A: General, 2020, 596, 117526.	2.2	9
432	Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels. Materials Science and Engineering C, 2021, 119, 111598.	3.8	9

#	Article	IF	CITATIONS
433	Analysis of the conformational preferences of (4R,5R)-4,5-bis(alkylcarbamoyl)-1,3-dioxolanes. Tetrahedron, 1996, 52, 8275-8286.	1.0	8
434	Effects of the φ[NHCO] Retromodification on Dehydroalanine Dipeptide. Journal of Biomolecular Structure and Dynamics, 1996, 14, 193-199.	2.0	8
435	Electron paramagnetic resonance and cyclic voltammetry of new alkylsulfanyl pyrroles. Models of stable radical cations. Perkin Transactions II RSC, 2000, , 905-906.	1.1	8
436	Influence of the presence of small gas molecules in the structure of comblike polyacrylates: A Monte Carlo study. Journal of Computational Chemistry, 2002, 23, 685-696.	1.5	8
437	Motion and sorption of gas molecules in poly(octadecyl acrylate). Polymer, 2003, 44, 4735-4745.	1.8	8
438	A Quantum Mechanical Study on the Electrostratic Interactions of Poly(I-lysine)Â-Alkyl Sulfate Complexes. Journal of Physical Chemistry A, 2003, 107, 4151-4156.	1.1	8
439	Systematic Evaluation of the Conformational Properties of Aliphatic ω-Methoxy Methyl Esters. Journal of Organic Chemistry, 2005, 70, 7731-7736.	1.7	8
440	Nanobiology: from physics and engineering to biology. Physical Biology, 2006, 3, .	0.8	8
441	Structural and Electronic Properties of Crown Ether Functionalized Oligothiophenes. Macromolecules, 2008, 41, 3919-3924.	2.2	8
442	Response of Crown Ether Functionalized Polythiophenes to Alkaline Ions. Journal of Physical Chemistry B, 2012, 116, 4575-4583.	1.2	8
443	Properties of poly(3-halidethiophene)s. Physical Chemistry Chemical Physics, 2012, 14, 10050.	1.3	8
444	Factors Governing the Conformational Tendencies of C ^α -Ethylated α-Amino Acids: Chirality and Side-Chain Size Effects. Journal of Physical Chemistry B, 2012, 116, 13297-13307.	1.2	8
445	En route towards the peptide <i>γ</i> â€helix: Xâ€ray diffraction analyses and conformational energy calculations of Admâ€rich short peptides. Journal of Peptide Science, 2017, 23, 346-362.	0.8	8
446	Self-assembly of diphenylalanine with preclick components as capping groups. Physical Chemistry Chemical Physics, 2017, 19, 27038-27051.	1.3	8
447	Weighing biointeractions between fibrin(ogen) and clotâ€binding peptides using microcantilever sensors. Journal of Peptide Science, 2017, 23, 162-171.	0.8	8
448	Grafting of Hydroxyapatite for Biomedical Applications. , 2018, , 45-80.		8
449	Sustainable Solidâ€State Supercapacitors Made of 3Dâ€Poly(3,4â€ethylenedioxythiophene) and κâ€Carrageenan Biohydrogel. Advanced Engineering Materials, 2018, 20, 1800018.	1.6	8
450	Assembly of Conducting Polymer and Biohydrogel for the Release and Real-Time Monitoring of Vitamin K3. Gels, 2018, 4, 86.	2.1	8

#	Article	IF	CITATIONS
451	Isomeric cationic ionenes as n-dopant agents of poly(3,4-ethylenedioxythiophene) for <i>in situ</i> gelation. Soft Matter, 2018, 14, 6374-6385.	1.2	8
452	Influence of the atmosphere conditions in the structure, properties and solubility of fluorine-substituted hydroxyapatites. Materials Chemistry and Physics, 2019, 226, 279-289.	2.0	8
453	Selfâ€Healable and Ecoâ€Friendly Hydrogels for Flexible Supercapacitors. Advanced Sustainable Systems, 2021, 5, 2000273.	2.7	8
454	Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation. Chemical Engineering Journal, 2022, 433, 133512.	6.6	8
455	Polarized Hydroxyapatite: New Insights and Future Perspectives Through Systematic Electrical Characterization at the Interface. Advanced Materials Interfaces, 2022, 9, .	1.9	8
456	SCF-MO study of the preferred conformations of nylons 1,n. Computational and Theoretical Chemistry, 1994, 304, 17-24.	1.5	7
457	Chain conformation in polyretropeptides. II. Quantum mechanical and empirical force field calculations on 2,5,9,11-Tetraoxo-3,6,8,12-tetraza-tridecane, a model compound for the terpolymer of glycine and its retropeptides. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1327-1338.	2.4	7
458	Towards the Understanding of the Folding of Methylene Units in the Glutamine Residue. Journal of Peptide Science, 1996, 2, 364-370.	0.8	7
459	Conformational Analysis of (S)-4-(Cyclohexoxycarbonyl)-2-azetidinone. Journal of Physical Chemistry A, 1997, 101, 4208-4214.	1.1	7
460	On the conformational preferences of nylons-n: Analysis of the intramolecular interactions in even nylons-n. Macromolecular Theory and Simulations, 1998, 7, 659-664.	0.6	7
461	An ab initio study of the conformational preferences of Hoechst 33258 in gas-phase and aqueous solution environments. Theoretical Chemistry Accounts, 1998, 99, 312-319.	0.5	7
462	Force-field parametrization and molecular dynamics simulations of p-menthan-3,9-diols: a family of amphiphilic compounds derived from terpenoids. Journal of Computer-Aided Molecular Design, 2001, 15, 235-245.	1.3	7
463	Calculated NMR chemical shifts of nylon 6: a comparison of the \hat{l}_{\pm} and \hat{l}_{3} forms. Journal of Materials Science, 2002, 37, 3589-3594.	1.7	7
464	Contraction Process of an Electroactive Actuator Based on a One Microsecond Atomistic Molecular Dynamics Simulation. Chemistry - A European Journal, 2007, 13, 2695-2700.	1.7	7
465	Coarse-graining: A procedure to generate equilibrated and relaxed models of amorphous polymers. Journal of Computational Chemistry, 2007, 28, 1929-1935.	1.5	7
466	Hydrogen-Bonding Interactions in 2-Thiophen-3-ylmalonic Acid. Journal of Physical Chemistry A, 2008, 112, 10650-10656.	1.1	7
467	Conformational Preferences of 1-Amino-2-phenylcyclohexanecarboxylic Acid, a Phenylalanine Cyclohexane Analogue. Journal of Organic Chemistry, 2009, 74, 7834-7843.	1.7	7
468	Side-Chain to Backbone Interactions Dictate the Conformational Preferences of a Cyclopentane Arginine Analogue. Journal of Organic Chemistry, 2009, 74, 2403-2412.	1.7	7

#	Article	IF	CITATIONS
469	Relaxation of amorphous multichain polymer systems using inverse kinematics. Polymer, 2010, 51, 4008-4014.	1.8	7
470	Structural and Electronic Properties of Poly[$\langle i \rangle N \langle i \rangle$ -(2-cyanoalkyl)pyrrole]s Bearing Small Alkyl Groups. Journal of Physical Chemistry B, 2011, 115, 2882-2889.	1.2	7
471	Peptideâ€based materials: from nanostructures to applications. Journal of Peptide Science, 2011, 17, 73-74.	0.8	7
472	Conformational Exploration of Two Peptides and Their Hybrid Polymer Conjugates: Potentialities As Self-Aggregating Materials. Journal of Physical Chemistry B, 2012, 116, 13941-13952.	1.2	7
473	Thermodynamic and stereochemical aspects of the polymerizability of glycolide and lactide. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	7
474	Design of hybrid conjugates based on chemical similarity. RSC Advances, 2013, 3, 21069.	1.7	7
475	Examining the formation of specific interactions between poly(3,4-ethylenedioxythiophene) and nucleotide bases. RSC Advances, 2013, 3, 2639.	1.7	7
476	Examining the compatibility of collagen and a polythiophene derivative for the preparation of bioactive platforms. RSC Advances, 2015, 5, 9189-9203.	1.7	7
477	Surface Mediated Hierarchical Assemblies of Highly Hydrophobic Phenylalanineâ€Based Peptides. ChemistrySelect, 2017, 2, 1133-1139.	0.7	7
478	Improving the fabrication of all-polythiophene supercapacitors. Polymer Science - Series B, 2017, 59, 194-201.	0.3	7
479	Nanophase-segregation in the dielectric layer enhances the charge storage capacity of polymeric electrochemical supercapacitors. Organic Electronics, 2017, 51, 322-331.	1.4	7
480	Intramolecular backbone···backbone hydrogen bonds in polypeptide conformations. The other way around: É›â€ŧurn. Biopolymers, 2017, 108, e22911.	1.2	7
481	Plasmaâ€Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing. Advanced Healthcare Materials, 2021, 10, e2100425.	3.9	7
482	Permanently polarized hydroxyapatite, an outstanding catalytic material for carbon and nitrogen fixation. Materials Horizons, 2022, 9, 1566-1576.	6.4	7
483	On the reliability of MINDO/3, MNDO and AM1 radical geometries for the computation of INDO electron spin resonance hyperfine coupling constants. Computational and Theoretical Chemistry, 1993, 281, 39-44.	1.5	6
484	Effects of Different Continium Dielectric Models in a Molecular Dynamics and Energy Minimization Study of the Antigenic Loop of Foot-and-Mouth Disease Virus. Journal of Biomolecular Structure and Dynamics, 1993, 11, 429-441.	2.0	6
485	Free energies of solvation in aqueous and organic solutions for solutes with amide, keto and ester functional groups. Chemical Physics, 1997, 222, 9-15.	0.9	6
486	Free energies of solvation for peptides and polypeptides using SCRF methods. Chemical Physics, 1998, 233, 85-96.	0.9	6

#	Article	IF	CITATIONS
487	The conformation of dehydroalanine in short homopeptides: molecular dynamics simulations of a 6-residue chain. Biophysical Chemistry, 2002, 98, 301-312.	1.5	6
488	Force-field parametrization of retro-inverso modified residues: Development of torsional and electrostatic parameters. Journal of Computer-Aided Molecular Design, 2006, 20, 13-25.	1.3	6
489	Parameterization of the torsional potential for calix[4]areneâ€substituted poly(thiophene)s. Journal of Computational Chemistry, 2010, 31, 1741-1751.	1.5	6
490	Key Building Block of Photoresponsive Biomimetic Systems. Journal of Physical Chemistry B, 2011, 115, 1232-1242.	1.2	6
491	Effects of ring contraction on the conformational preferences of αâ€substituted proline analogs. Biopolymers, 2012, 98, 98-110.	1.2	6
492	Synergy of the redox pair in the capacitive properties of nanometric poly(3,4-ethylenedioxythiophene). Organic Electronics, 2013, 14, 131-142.	1.4	6
493	Polypyrrole derivatives as solvent vapor sensors. RSC Advances, 2013, 3, 20545.	1.7	6
494	\hat{l}_{\pm} -Alkyl cysteine-coated gold nanoparticles: effect of \hat{Cl}_{\pm} -tetrasubstitution on colloidal stability. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	6
495	Molecular Dynamics Simulation Study of Methanesulfonic Acid. Journal of Physical Chemistry B, 2014, 118, 3423-3430.	1.2	6
496	Electroactive polymers for the detection of morphine. Journal of Polymer Research, 2014, 21, 1.	1.2	6
497	Surviving Mass Extinctions through Biomineralized DNA. Chemistry - A European Journal, 2015, 21, 18892-18898.	1.7	6
498	1-Butanol absorption in poly(styrene-divinylbenzene) ion exchange resins for catalysis. Soft Matter, 2015, 11, 9144-9149.	1.2	6
499	Electrospray loading and release of hydrophobic gramicidin in polyester microparticles. RSC Advances, 2016, 6, 73045-73055.	1.7	6
500	Influence of pH in the synthesis of ferric tannate pigment for application in antifouling coatings. Journal of Coatings Technology Research, 2017, 14, 945-953.	1.2	6
501	Properties of <i>In situ</i> polymerized poly(3,4â€ethylenedioxythiophene)/alumina composites for energy storage applications. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1131-1141.	2.4	6
502	Distribution of dopant ions around poly(3,4-ethylenedioxythiophene) chains: a theoretical study. Physical Chemistry Chemical Physics, 2017, 19, 9889-9899.	1.3	6
503	Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages. Chemical Communications, 2018, 54, 2118-2121.	2.2	6
504	3D structure of a <i>Brucella melitensis</i> porin: molecular modelling in lipid membranes. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3923-3935.	2.0	6

#	Article	IF	CITATIONS
505	Ion–Ion Repulsions and Charge-Shielding Effects Dominate the Permeation Mechanism through the OmpF Porin Channel. Journal of Physical Chemistry B, 2019, 123, 86-94.	1.2	6
506	Structural and functional characterization of <scp><i>Solanum tuberosum</i></scp> VDAC36. Proteins: Structure, Function and Bioinformatics, 2020, 88, 729-739.	1.5	6
507	Electroactive interpenetrated biohydrogels as hybrid materials based on conducting polymers. Journal of Applied Polymer Science, 2021, 138, 50062.	1.3	6
508	Green Nanocoatings Based on the Deposition of Zirconium Oxide: The Role of the Substrate. Materials, 2021, 14, 1043.	1.3	6
509	3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications. Materials, 2021, 14, 5513.	1.3	6
510	Unravelling the molecular interactions between the SARS-CoV-2 RBD spike protein and various specific monoclonal antibodies. Biochimie, 2022, 193, 90-102.	1.3	6
511	Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate. International Journal of Biological Macromolecules, 2021, 193, 1237-1248.	3.6	6
512	<scp>UV</scp> assisted photo reactive polyetherâ€polyesteramide resin for future applications in <scp>3D</scp> printing. Journal of Polymer Science, 2022, 60, 688-700.	2.0	6
513	Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate). Polymers, 2022, 14, 161.	2.0	6
514	Biomass-derived isosorbide-based thermoresponsive hydrogel for drug delivery. Soft Matter, 2022, 18, 4963-4972.	1.2	6
515	Fine-tuning of polarized hydroxyapatite for the catalytic conversion of dinitrogen to ammonium under mild conditions. Chemical Engineering Journal, 2022, 446, 137440.	6.6	6
516	A MNDO and AM1 quantum chemical study of the reaction mechanism of the McLafferty type rearrangement in the butanal radical cation. Computational and Theoretical Chemistry, 1992, 277, 117-127.	1.5	5
517	Conformational Preferences of 2,3,3a,8a-Tetrahydrofuro[2,3-b]benzofuran. The Chemical Modifications Drive the Pseudorotational Preferences. Journal of Organic Chemistry, 1999, 64, 5712-5714.	1.7	5
518	Crystalline poly(4-methyl-1-pentene): Structure and solubility of gas molecules. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2037-2049.	2.4	5
519	Simulation of Amorphous Nylon 6 Using SuSi, a Strategy Based on Generation–Relaxation Algorithms. Macromolecular Theory and Simulations, 2004, 13, 345-354.	0.6	5
520	A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of \hat{l} ±-tetrathiophene. Chemical Physics, 2006, 323, 407-412.	0.9	5
521	Influence of the Temperature on the Proton Transport in Poly(styrene-co-divinylbenzene) Membranes from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2014, 118, 17643-17654.	1.5	5
522	Restricted Puckering of Mineralized RNA-Like Riboses. Journal of Physical Chemistry B, 2014, 118, 5075-5081.	1.2	5

#	Article	IF	CITATIONS
523	Internal organization of macromonomers and dendronized polymers based on thiophene dendrons. Soft Matter, 2015, 11, 1116-1126.	1.2	5
524	Enhanced dielectric performance of a block copolymer-polythiophene nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1896-1905.	2.4	5
525	Preparation and Characterization of Poly(<i>N</i> -Methylpyrrole)/MoO ₃ Hybrid Composites. Polymer-Plastics Technology and Engineering, 2017, 56, 1704-1712.	1.9	5
526	Amyloid fibrils from organic solutions of an amphiphilic dipeptide. Chemical Communications, 2019, 55, 8556-8559.	2.2	5
527	Free-standing flexible and biomimetic hybrid membranes for ions and ATP transport. Journal of Membrane Science, 2020, 601, 117931.	4.1	5
528	Free-Standing, Flexible Nanofeatured Polymeric Films Prepared by Spin-Coating and Anodic Polymerization as Electrodes for Supercapacitors. Molecules, 2021, 26, 4345.	1.7	5
529	Aluminum Protection by Using Green Zirconium Oxide Layer and Organic Coating: An Efficient and Adherent Dual System. Sustainability, 2021, 13, 9688.	1.6	5
530	Polypeptide hydrogel loaded with conducting polymer nanoparticles as electroresponsive delivery system of small hydrophobic drugs. European Polymer Journal, 2022, 173, 111199.	2.6	5
531	Ab initio SCF incremental triplet polarizabilities of alkali metal halide clusters. The Journal of Physical Chemistry, 1991, 95, 9791-9794.	2.9	4
532	On the Lamellar Crystal Structure of Nylons 6,8 and 8,10: A Study Combining Electron Microscopy and Energy Analysis. Macromolecular Chemistry and Physics, 2003, 204, 83-88.	1.1	4
533	Structure and dynamics of the surfactant molecules in dodecyltrimethylammonium·poly(α,l-glutamate) self-assembled complexes. Chemical Physics, 2004, 305, 85-93.	0.9	4
534	Modeling the amorphous phase of comb-like polymers. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 953-966.	2.4	4
535	Intrinsic Flexing Abilities of Molecular Muscles Based on Tetrakis(2,3-thienylene):  A Quantum Mechanical Study. Journal of Physical Chemistry A, 2007, 111, 2329-2335.	1.1	4
536	Molecular dynamics of a calix[4]areneâ€containing polymer in dichloromethane solution: Ability of the solvent molecules to fill the cavity of the macrocycle. Journal of Computational Chemistry, 2008, 29, 1233-1241.	1.5	4
537	Sensing Mechanism of Calix[4]arene-Substituted Poly(thiophene) Ion Receptor: Effects of the Selectivity on the Molecular Rigidity. Journal of Physical Chemistry B, 2009, 113, 8284-8287.	1.2	4
538	On the π-stacking of oxidized thiophene oligomers. Chemical Physics Letters, 2010, 488, 177-181.	1.2	4
539	Conformational Profile of a Prolineâ^'Arginine Hybrid. Journal of Chemical Information and Modeling, 2010, 50, 1781-1789.	2.5	4
540	Atomistic modeling of peptides bound to a chemically active surface: conformational implications. Journal of Peptide Science, 2011, 17, 132-138.	0.8	4

#	Article	IF	CITATIONS
541	Stochastic simulation of structural properties of natively unfolded and denatured proteins. Journal of Molecular Modeling, 2012, 18, 4503-4516.	0.8	4
542	Properties of Oligothiophene Dendrimers as a Function of Molecular Architecture and Generation Number. ChemPhysChem, 2012, 13, 1354-1362.	1.0	4
543	Conducting polymers obtained from quiescent and stirred solutions: Effects on the properties. Polymer Engineering and Science, 2014, 54, 2121-2131.	1.5	4
544	Electroâ€biocompatibility of conjugates designed by chemical similarity. Journal of Peptide Science, 2014, 20, 537-546.	0.8	4
545	Copper Coordination Study in a Metal-Induced Chiral Polythiophene Aggregate. Journal of Physical Chemistry C, 2014, 118, 9769-9779.	1.5	4
546	Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
547	Modeling of a Câ€end rule peptide adsorbed onto gold nanoparticles. Journal of Peptide Science, 2018, 24, e3057.	0.8	4
548	Biominerals Formed by DNA and Calcium Oxalate or Hydroxyapatite: A Comparative Study. Langmuir, 2019, 35, 11912-11922.	1.6	4
549	Scaffolds for Sustained Release of Ambroxol Hydrochloride, a Pharmacological Chaperone That Increases the Activity of Misfolded βâ€Glucocerebrosidase. Macromolecular Bioscience, 2019, 19, 1900130.	2.1	4
550	Interface porosity in multilayered all onducting polymer electrodes. Polymer Engineering and Science, 2019, 59, 1624-1635.	1.5	4
551	Effect on the Conformation of a Terminally Blocked, $(\langle i\rangle E\langle i\rangle)$ \hat{l}^2,\hat{l}^3 -Unsaturated \hat{l} -Amino Acid Residue Induced by Carbon Methylation. Journal of Organic Chemistry, 2020, 85, 1513-1524.	1.7	4
552	Tethering of the IgG1 Antibody to Amorphous Silica for Immunosensor Development: A Molecular Dynamics Study. Langmuir, 2020, 36, 12658-12667.	1.6	4
553	Nanofeatures affect the thermal transitions of polymer thin films: a microcantilever-based investigation. Materials Advances, 2020, 1, 2084-2094.	2.6	4
554	Self-standing, conducting and capacitive biomimetic hybrid nanomembranes for selective molecular ion separation. Physical Chemistry Chemical Physics, 2021, 23, 16157-16164.	1.3	4
555	Investigation of the mechanical properties and biocompatibility of planar and electrospun alkene-styrene copolymers against P(VDF-TrFE) and porcine skin: Potential use as second skin substrates. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104481.	1.5	4
556	Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112522.	2.5	4
557	Ab initio SCF-MO incremental triplet polarizabilities of neon clusters. International Journal of Mass Spectrometry and Ion Processes, 1992, 122, 331-336.	1.9	3
558	A method for generating reliable atomistic models of amorphous polymers based on a random search of energy minima. Computer Physics Communications, 2005, 169, 335-338.	3.0	3

#	Article	IF	Citations
559	La modelizaciÃ ³ n molecular como herramienta para el diseñ0 de nuevos polÃmeros conductores. Polimeros, 2005, 15, 239-244.	0.2	3
560	A theoretical study on the interaction between N-methylpyrrole and 3,4-ethylenedioxythiophene units in copolymer molecules. Polymer, 2007, 48, 6162-6169.	1.8	3
561	Effects of hydroxyapatite (0001) Ca ²⁺ /Mg ²⁺ substitution on adsorbed <scp>d</scp> -ribose ring puckering. RSC Advances, 2016, 6, 69634-69640.	1.7	3
562	Antimicrobial Electrospun Fibers of Polyester Loaded with Engineered Cyclic Gramicidin Analogues. Fibers, 2017, 5, 34.	1.8	3
563	Influence of the surrounding environment in re-naturalized \hat{l}^2 -barrel membrane proteins. Biophysical Chemistry, 2018, 234, 6-15.	1.5	3
564	Peptide-polymer conjugate material: Understanding its conformational preferences as a function of the degree of solvation. Chemical Physics, 2019, 522, 163-170.	0.9	3
565	2,7-Linked N-methylcarbazole copolymers by combining the macromonomer approach and the oxidative electrochemical polymerization. Polymer Bulletin, 2020, 77, 1233-1253.	1.7	3
566	Semiâ€Interpenetrated Hydrogelsâ€Microfibers Electroactive Assemblies for Release and Realâ€Time Monitoring of Drugs. Macromolecular Bioscience, 2020, 20, e2000074.	2.1	3
567	Aggregation propensity of therapeutic fibrin-homing pentapeptides: insights from experiments and molecular dynamics simulations. Soft Matter, 2020, 16, 10169-10179.	1.2	3
568	Aplicaciones de los métodos computacionales al estudio de la estructura y propiedades de polÃmeros. Polimeros, 2003, 13, 250-264.	0.2	3
569	Incorporation of Functionalized Calcium Phosphate Nanoparticles in Living Cells. Journal of Cluster Science, 2022, 33, 2781-2795.	1.7	3
570	Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material. International Journal of Molecular Sciences, 2021, 22, 13165.	1.8	3
571	Combining 2D organic and 1D inorganic nanoblocks to develop free-standing hybrid nanomembranes for conformable biosensors. Journal of Nanostructure in Chemistry, 2023, 13, 507-517.	5.3	3
572	Conformational preferences of model aliphatic diamides: Effect of the methyl side group on the polymethylene segment. Macromolecular Theory and Simulations, 2000, 9, 242-248.	0.6	2
573	Dynamics of p-Menthan-3,9-diols. A Computational Study in Aqueous and Chloroform Solutions of Two Epimers. Tetrahedron, 2000, 56, 6089-6097.	1.0	2
574	Conformational preferences of the 1,2-hydrazine dicarboxylic acid dimethyl ester. A comparison with the hydrazide analogue. Computational and Theoretical Chemistry, 2001, 541, 179-183.	1.5	2
575	Thermally induced phase transition in helical comblike poly(\hat{l}^2 -peptide)s: An atomistic simulation. Journal of Computational Chemistry, 2003, 24, 770-778.	1.5	2
576	Solubility of N2in poly(\hat{l}_{\pm} -n-hexyl- \hat{l}_{-} ,L-aspartate): Temperature and force-field dependence. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2928-2936.	2.4	2

#	Article	IF	CITATIONS
577	Stabilization of Rasburicase and Physicoâ€Chemical Characterization of the Resulting Injectable Formulation. Drug Development and Industrial Pharmacy, 2004, 30, 877-889.	0.9	2
578	Simulation of the selfâ€assembly of poly(αâ€glutamate) and dodecyltrimethylammonium: Diffusive role of the surfactant cations. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 917-924.	2.4	2
579	Properties of oligothiophene polycations. Journal of Physical Organic Chemistry, 2014, 27, 867-875.	0.9	2
580	Conformational analysis of a modified RGD adhesive sequence. Journal of Peptide Science, 2017, 23, 172-181.	0.8	2
581	A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids. Methods in Molecular Biology, 2017, 1529, 323-352.	0.4	2
582	Impact of Proteinâ€Polymer Interactions in the Antimicrobial Activity of Lysozyme/Poly(3,4â€ethylenedioxythiophene) Biocapacitors. ChemistrySelect, 2018, 3, 9714-9724.	0.7	2
583	Detailed Description of the Molecular Organization behind AFM Images of Polymer Coatings: A Molecular Modeling Approach. Journal of Physical Chemistry C, 2018, 122, 20261-20270.	1.5	2
584	Spectroscopy investigations reveal unprecedented details in the corrosion of AISI 1012 UPN profiles installed in a modernist building of beginning of 20th century. Journal of Cultural Heritage, 2020, 42, 240-248.	1.5	2
585	Conducting polymer nanoparticles for a voltage-controlled release of pharmacological chaperones. Soft Matter, 2021, 17, 3314-3321.	1.2	2
586	Structural preferences of an anti-fouling peptide: From single chain to small molecular assemblies. Biophysical Chemistry, 2021, 272, 106555.	1.5	2
587	Atmospheric pressure plasma liquid assisted deposition of polydopamine/acrylate copolymer on zirconia (Y-TZP) ceramics: a biocompatible and adherent nanofilm. RSC Advances, 2021, 11, 17360-17368.	1.7	2
588	Racemic synthesis of 1,2-secomicrominutinin. Journal of the Brazilian Chemical Society, 2005, 16, 626-633.	0.6	2
589	In silico antibody engineering for SARS-CoV-2 detection. Computational and Structural Biotechnology Journal, 2021, 19, 5525-5534.	1.9	2
590	Efficient Oneâ€Pot Preparation of Thermoresponsive Polyurethanes with Lower Critical Solution Temperatures. ChemPlusChem, 2021, 86, 1570-1576.	1.3	2
591	Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis. ACS Applied Nano Materials, 2022, 5, 8526-8536.	2.4	2
592	A comparative study of the performance of Dewar's semiempirical methods to compute electron spin resonance hyperfine coupling constants. Computational and Theoretical Chemistry, 1993, 282, 251-258.	1.5	1
593	A quantum mechanical study of the folding of methylene units in compounds with several glutaramide units: nylon 1,5. Macromolecular Theory and Simulations, 1998, 7, 367-372.	0.6	1
594	Conformational analysis of the $13/4$ to $4/1$ helical transition in poly($\hat{l}\pm$ -isobutyl \hat{l}^2 -L-aspartate). Polymer, 1999, 40, 5647-5654.	1.8	1

#	Article	IF	CITATIONS
595	Force field parametrization of 1,3-dihydroimidazol-2-one. Computational and Theoretical Chemistry, 1999, 464, 249-255.	1.5	1
596	Dinaphtho[2′,3′:5,6][1,4]dithiino[2,3-b:2,3-e]pyridine, its 16-butyl derivative and dinaphtho[2′,3′:5,6][1,4]dioxo[2,3-b:2,3-e]pyridine: novel heterocycles as electron donor compounds. New Journal of Chemistry, 2002, 26, 1308-1313.	1.4	1
597	Effect of the environment on the stability of surfactant-polypeptide self-assembled complexes: Molecular dynamics simulations of stoichiometric complexes formed byN-dodecyltrimethylammonium and poly(î±,L-glutamate) in chloroform, methanol, and water. Journal of Polymer Science, Part B: Polymer Physics. 2006. 44. 1122-1133.	2.4	1
598	Solventâ€induced conformational flexibility of a bicyclic proline analogue: Octahydroindoleâ€2â€carboxylic acid. Biopolymers, 2014, 102, 176-190.	1,2	1
599	Properties of Cu nanoparticles–poly(<i>N</i> à€methylpyrrole) composites. Polymer Composites, 2016, 37, 594-601.	2.3	1
600	Close contacts at the interface: Experimental-computational synergies for solving complexity problems. ChemistrySelect, 2018, 3, .	0.7	1
601	In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112400.	2.5	1
602	IgG1-b12–HIV-gp120 Interface in Solution: A Computational Study. Journal of Chemical Information and Modeling, 2022, 62, 359-371.	2.5	1
603	Porous Poly(3,4â€ethylenedioxythiophene)â€Based Electrodes for Detecting Stress Biomarkers in Artificial Urine and Sweat. Macromolecular Materials and Engineering, 0, , 2200269.	1.7	1
604	Mechanism of deoxygenation of butyraldehyde by atomic carbon. Computational and Theoretical Chemistry, 1993, 282, 247-250.	1.5	0
605	Computational studies in aqueous and chloroform solutions of complex organic solutes: distinctive effects of the solvent on solutes with small chemical differences. Chemical Physics, 1999, 241, 167-177.	0.9	0
606	Monomer Solubility and Diffusion in Confined Polyethylene by Mapping Atomistic Trajectories onto the Macroscopic Diffusion Equation. Computer Aided Chemical Engineering, 2006, , 183-200.	0.3	0
607	Composites based on epoxy resins and poly(3â€thiophene methyl acetate) nanoparticles: mechanical and electrical properties. Polymer Composites, 2016, 37, 734-745.	2.3	0
608	Solvent effects on the properties of hyperbranched polythiophenes. Physical Chemistry Chemical Physics, 2016, 18, 24610-24619.	1.3	0
609	Specific Interactions Between Electroactive Conducting Polymers and DNA Bases. Materials and Energy, 2018, , 115-138.	2.5	0
610	2. Close Contacts at the interface: Experimental-computational synergies for solving complexity problems. , 2018, , 53-80.		0
611	Study on the control of porosity in films of polythiophene derivatives. Polymer, 2019, 182, 121858.	1.8	0
612	The effect of dodecylbenzenesulfonic acid molecules on poly(4,4-diphenylether-5,5-dibenzimidazole) films. Journal of Polymer Research, 2020, 27, 1.	1,2	0

#	Article	IF	CITATIONS
613	Synthesis and characterization of a new benzobisoxazole/thiophene derivative polymer and the effect of the substituent on the push/pull properties. Journal of Polymer Science, 2021, 59, 3167.	2.0	0
614	Thermodynamic and stereochemical aspects of the polymerizability of glycolide and lactide. Highlights in Theoretical Chemistry, 2013, , 21-30.	0.0	0
615	Use of poly(limonene-8,9-oxide carbonate) as a bio-based prepolymer for epoxy thermoset production \hat{A} . , 0, , .		O
616	Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach. Molecular Diversity, 2022, , 1.	2.1	0