Xianfeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/931795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013, 16, 229-241.	8.3	645
2	Electrospun nanomaterials for ultrasensitive sensors. Materials Today, 2010, 13, 16-27.	8.3	562
3	Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science, 2013, 58, 1173-1243.	16.0	440
4	Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today, 2011, 6, 510-530.	6.2	417
5	Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Materials Today, 2016, 19, 403-414.	8.3	369
6	Continuous, Spontaneous, and Directional Water Transport in the Trilayered Fibrous Membranes for Functional Moisture Wicking Textiles. Small, 2018, 14, e1801527.	5.2	213
7	A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology, 2010, 21, 055502.	1.3	153
8	Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nature Communications, 2020, 11, 3302.	5.8	143
9	Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles. ACS Nano, 2020, 14, 1045-1054.	7.3	131
10	Biomimetic Fibrous Murray Membranes with Ultrafast Water Transport and Evaporation for Smart Moisture-Wicking Fabrics. ACS Nano, 2019, 13, 1060-1070.	7.3	120
11	Amino Acid-Functionalized Ionic Liquid Solid Sorbents for Post-Combustion Carbon Capture. ACS Applied Materials & Interfaces, 2013, 5, 8670-8677.	4.0	107
12	Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. Journal of Materials Chemistry A, 2013, 1, 2978.	5.2	104
13	Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. ACS Applied Materials & Interfaces, 2017, 9, 29302-29310.	4.0	101
14	Biomimicry via Electrospinning. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 94-114.	6.8	100
15	Breathable and Colorful Cellulose Acetate-Based Nanofibrous Membranes for Directional Moisture Transport. ACS Applied Materials & Interfaces, 2018, 10, 22866-22875.	4.0	100
16	A Biomimetic Transpiration Textile for Highly Efficient Personal Drying and Cooling. Advanced Functional Materials, 2021, 31, 2008705.	7.8	98
17	Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance. Separation and Purification Technology, 2016, 158, 53-61.	3.9	93
18	Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling. Nano Letters, 2022, 22, 680-687.	4.5	93

#	Article	IF	CITATIONS
19	Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. ACS Applied Materials & Interfaces, 2020, 12, 32078-32089.	4.0	90
20	Oneâ€step Electroâ€spinning/netting Technique for Controllably Preparing Polyurethane Nanoâ€fiber/net. Macromolecular Rapid Communications, 2011, 32, 1729-1734.	2.0	87
21	Ultrahigh Metal–Organic Framework Loading and Flexible Nanofibrous Membranes for Efficient CO ₂ Capture with Long-Term, Ultrastable Recyclability. ACS Applied Materials & Interfaces, 2018, 10, 34802-34810.	4.0	87
22	Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydrate Polymers, 2014, 108, 192-199.	5.1	86
23	Highly flexible NiCo 2 O 4 /CNTs doped carbon nanofibers for CO 2 adsorption and supercapacitor electrodes. Journal of Colloid and Interface Science, 2016, 476, 87-93.	5.0	74
24	Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromolecular Rapid Communications, 2019, 40, e1800931.	2.0	70
25	Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting. Colloids and Surfaces B: Biointerfaces, 2011, 86, 345-352.	2.5	65
26	Multi-scaled interconnected inter- and intra-fiber porous janus membranes for enhanced directional moisture transport. Journal of Colloid and Interface Science, 2020, 565, 426-435.	5.0	65
27	Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers. Soft Matter, 2011, 7, 8376.	1.2	63
28	Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. ACS Applied Materials & Interfaces, 2018, 10, 30887-30894.	4.0	63
29	Balsam-Pear-Skin-Like Porous Polyacrylonitrile Nanofibrous Membranes Grafted with Polyethyleneimine for Postcombustion CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 41087-41098.	4.0	60
30	Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Applied Energy, 2013, 109, 112-118.	5.1	57
31	Multifunctional, Waterproof, and Breathable Nanofibrous Textiles Based on Fluorine-Free, All-Water-Based Coatings. ACS Applied Materials & Interfaces, 2020, 12, 15911-15918.	4.0	57
32	Flexible Fe3O4@Carbon Nanofibers Hierarchically Assembled with MnO2 Particles for High-Performance Supercapacitor Electrodes. Scientific Reports, 2017, 7, 15153.	1.6	56
33	Fluorescent sensor for indirect measurement of methyl parathion based on alkaline-induced hydrolysis using N-doped carbon dots. Talanta, 2019, 192, 368-373.	2.9	54
34	Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere, 2019, 237, 124403.	4.2	53
35	Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 2017, 6, 41-47.	3.3	51
36	Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption. Journal of Colloid and Interface Science, 2020, 561, 659-667.	5.0	48

#	Article	IF	CITATIONS
37	Tailoring Differential Moisture Transfer Performance of Nonwoven/Polyacrylonitrile‣iO ₂ Nanofiber Composite Membranes. Advanced Materials Interfaces, 2017, 4, 1700062.	1.9	46
38	Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. Nanoscale Horizons, 2019, 4, 867-873.	4.1	41
39	Environmentally Friendly, Durably Waterproof, and Highly Breathable Fibrous Fabrics Prepared by One-Step Fluorine-Free Waterborne Coating. ACS Applied Materials & Interfaces, 2022, 14, 8613-8622.	4.0	41
40	Facile fabrication of fluorine-free breathable poly(methylhydrosiloxane)/polyurethane fibrous membranes with enhanced water-resistant capability. Journal of Colloid and Interface Science, 2019, 556, 541-548.	5.0	40
41	Novel fluorinated polybenzoxazine–silica films: chemical synthesis and superhydrophobicity. RSC Advances, 2012, 2, 12804.	1.7	39
42	Corncoblike, Superhydrophobic, and Phase-Changeable Nanofibers for Intelligent Thermoregulating and Water-Repellent Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 39324-39333.	4.0	39
43	Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Advances, 2015, 5, 91813-91820.	1.7	38
44	Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability. Composites Communications, 2019, 15, 40-45.	3.3	38
45	Sandwich-Structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chemical Engineering Journal, 2022, 450, 138012.	6.6	37
46	Polyaniline Enriched Flexible Carbon Nanofibers with Core–Shell Structure for Highâ€Performance Wearable Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1700855.	1.9	36
47	One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. Journal of Colloid and Interface Science, 2020, 577, 207-216.	5.0	35
48	Robust and Flexible Carbon Nanofibers Doped with Amine Functionalized Carbon Nanotubes for Efficient CO ₂ Capture. Advanced Sustainable Systems, 2017, 1, 1600028.	2.7	34
49	Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. Journal of Colloid and Interface Science, 2020, 560, 379-387.	5.0	34
50	Cobalt oxide nanoparticles embedded in flexible carbon nanofibers: attractive material for supercapacitor electrodes and CO ₂ adsorption. RSC Advances, 2016, 6, 52171-52179.	1.7	33
51	Multi-bioinspired and Multistructural Integrated Patterned Nanofibrous Surface for Spontaneous and Efficient Fog Collection. Nano Letters, 2021, 21, 7806-7814.	4.5	33
52	In situ synthesis of carbon nanotube doped metal–organic frameworks for CO ₂ capture. RSC Advances, 2016, 6, 4382-4386.	1.7	32
53	A Trilayered Composite Fabric with Directional Water Transport and Resistance to Blood Penetration for Medical Protective Clothing. ACS Applied Materials & Interfaces, 2022, 14, 18944-18953.	4.0	26
54	Electrospun bamboo-like Fe3C encapsulated Fe-Si-N co-doped nanofibers for efficient oxygen reduction. Journal of Colloid and Interface Science, 2019, 546, 231-239.	5.0	25

#	Article	IF	CITATIONS
55	Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design. Composites Communications, 2021, 25, 100481.	3.3	25
56	Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. Journal of Environmental Management, 2021, 288, 112388.	3.8	25
57	Highly Transparent Nanofibrous Membranes Used as Transparent Masks for Efficient PM _{0.3} Removal. ACS Nano, 2022, 16, 119-128.	7.3	25
58	Amine-impregnated porous nanofiber membranes for CO2 capture. Composites Communications, 2018, 10, 45-51.	3.3	21
59	Highâ€Fidelity Determination and Tracing of Small Extracellular Vesicle Cargoes. Small, 2020, 16, e2002800.	5.2	21
60	Nuclear Magnetic Resonance Studies of CO ₂ Absorption and Desorption in Aqueous Sodium Salt of Alanine. Energy & Fuels, 2015, 29, 3780-3784.	2.5	20
61	Colorimetric and fluorescent dual-identification of glutathione based on its inhibition on the 3D ball-flower shaped Cu-hemin-MOF's peroxidase-like activity. Mikrochimica Acta, 2020, 187, 601.	2.5	19
62	Lizard-Skin-Inspired Nanofibrous Capillary Network Combined with a Slippery Surface for Efficient Fog Collection. ACS Applied Materials & Interfaces, 2021, 13, 36587-36594.	4.0	18
63	Comparative study on enhanced pectinase and alkali-oxygen degummings of sisal fibers. Cellulose, 2021, 28, 8375-8386.	2.4	17
64	Biomimetic Aligned Micro-/Nanofibrous Composite Membranes with Ultrafast Water Transport and Evaporation for Efficient Indoor Humidification. ACS Applied Materials & Interfaces, 2022, 14, 1983-1993.	4.0	16
65	Effects of parameters of the shell formation process on the performance of microencapsulated phase change materials based on melamine-formaldehyde. Textile Reseach Journal, 2017, 87, 1848-1859.	1.1	15
66	How do proteins â€~response' to common carbon nanomaterials?. Advances in Colloid and Interface Science, 2019, 270, 101-107.	7.0	13
67	Bifunctional Microcapsules with n-Octadecane/Thyme Oil Core and Polyurea Shell for High-Efficiency Thermal Energy Storage and Antibiosis. Polymers, 2020, 12, 2226.	2.0	13
68	Rapid Preparation of Activated Carbon Fiber Felt under Microwaves: Pore Structures, Adsorption of Tetracycline in Water, and Mechanism. Industrial & Engineering Chemistry Research, 2020, 59, 146-153.	1.8	11
69	Tailoring high anti-UV performance polypropylene based geotextiles with homogeneous waterborne polyurethane-TiO2 composite emulsions. Composites Communications, 2020, 22, 100529.	3.3	11
70	Transformation of Fibrous Membranes from Opaque to Transparent under Mechanical Pressing. Engineering, 2022, 19, 84-92.	3.2	11
71	Honeycombâ€Inspired Robust Hygroscopic Nanofibrous Cellular Networks. Small Methods, 2021, 5, e2101011.	4.6	11
72	A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles. Polymers, 2020, 12, 285.	2.0	9

#	Article	IF	CITATIONS
73	Water electret charging based polypropylene/electret masterbatch composite melt-blown nonwovens with enhanced charge stability for efficient air filtration. Journal of the Textile Institute, 2022, 113, 2128-2134.	1.0	9
74	Preparation of Flexible Substrate Electrode for Supercapacitor With High-Performance MnO2 Stalagmite Nanorod Arrays. Frontiers in Chemistry, 2019, 7, 338.	1.8	5
75	Self-assembly of polyethylene oxide and its composite nanofibrous membranes with cellular network structure. Composites Communications, 2021, 27, 100759.	3.3	5
76	Novel nitrogen-doped carbon dots for "turn-on―sensing of ATP based on aggregation induced emission enhancement effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 273, 121044.	2.0	5
77	Introduction and Historical Overview. , 2019, , 3-20.		4
78	Electrospun Nanofibers for Carbon Dioxide Capture. , 2019, , 619-640.		4
79	Designing Unidirectional Moisture Transport Fabric Based on PA/CA Membrane Fabricated by Electrospinning. Fibers and Polymers, 2021, 22, 2404-2412.	1.1	3
80	Tailoring high efficiency polypropylene based composite geotextiles for dewatering fly ash slurries. Composites Communications, 2021, 26, 100794.	3.3	3
81	Macromol. Rapid Commun. 21/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0

Moisture Transport: Tailoring Differential Moisture Transfer Performance of Nonwoven/Polyacrylonitrile‧iO₂ Nanofiber Composite Membranes (Adv. Mater. Interfaces) Tj ETQq0.9 0 rgBTdOverlock 82