Xianfeng Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/931795/xianfeng-wang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

74 4,393 32 66 g-index

83 5,185 9 5.99 ext. papers ext. citations avg, IF L-index

#	Paper Paper	IF	Citations
74	Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling <i>Nano Letters</i> , 2022 ,	11.5	16
73	Novel nitrogen-doped carbon dots for "turn-on" sensing of ATP based on aggregation induced emission enhancement effect <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2022 , 273, 121044	4.4	0
72	Honeycomb-Inspired Robust Hygroscopic Nanofibrous Cellular Networks Small Methods, 2021 , 5, e210	1 .0 18	3
71	Designing Unidirectional Moisture Transport Fabric Based on PA/CA Membrane Fabricated by Electrospinning. <i>Fibers and Polymers</i> , 2021 , 22, 2404-2412	2	0
70	Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. <i>Journal of Environmental Management</i> , 2021 , 288, 112388	7.9	7
69	Lizard-Skin-Inspired Nanofibrous Capillary Network Combined with a Slippery Surface for Efficient Fog Collection. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 36587-36594	9.5	6
68	Comparative study on enhanced pectinase and alkali-oxygen degummings of sisal fibers. <i>Cellulose</i> , 2021 , 28, 8375-8386	5.5	6
67	Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design. <i>Composites Communications</i> , 2021 , 25, 100481	6.7	12
66	A Biomimetic Transpiration Textile for Highly Efficient Personal Drying and Cooling. <i>Advanced Functional Materials</i> , 2021 , 31, 2008705	15.6	28
65	Tailoring high efficiency polypropylene based composite geotextiles for dewatering fly ash slurries. <i>Composites Communications</i> , 2021 , 26, 100794	6.7	
64	Multi-bioinspired and Multistructural Integrated Patterned Nanofibrous Surface for Spontaneous and Efficient Fog Collection. <i>Nano Letters</i> , 2021 , 21, 7806-7814	11.5	5
63	Self-assembly of polyethylene oxide and its composite nanofibrous membranes with cellular network structure. <i>Composites Communications</i> , 2021 , 27, 100759	6.7	4
62	Multifunctional, Waterproof, and Breathable Nanofibrous Textiles Based on Fluorine-Free, All-Water-Based Coatings. <i>ACS Applied Materials & Description</i> (12), 15911-15918	9.5	29
61	Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 32078-32089	9.5	41
60	Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. <i>Nature Communications</i> , 2020 , 11, 3302	17.4	53
59	Multi-scaled interconnected inter- and intra-fiber porous janus membranes for enhanced directional moisture transport. <i>Journal of Colloid and Interface Science</i> , 2020 , 565, 426-435	9.3	31
58	A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles. <i>Polymers</i> , 2020 , 12,	4.5	3

57	One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. <i>Journal of Colloid and Interface Science</i> , 2020 , 577, 207-216	9.3	21
56	Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles. <i>ACS Nano</i> , 2020 , 14, 1045-1054	16.7	65
55	Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO adsorption. <i>Journal of Colloid and Interface Science</i> , 2020 , 561, 659-667	9.3	21
54	Rapid Preparation of Activated Carbon Fiber Felt under Microwaves: Pore Structures, Adsorption of Tetracycline in Water, and Mechanism. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 146-1	5³3 ⁹	5
53	Bifunctional Microcapsules with n-Octadecane/Thyme Oil Core and Polyurea Shell for High-Efficiency Thermal Energy Storage and Antibiosis. <i>Polymers</i> , 2020 , 12,	4.5	6
52	Tailoring high anti-UV performance polypropylene based geotextiles with homogeneous waterborne polyurethane-TiO2 composite emulsions. <i>Composites Communications</i> , 2020 , 22, 100529	6.7	4
51	Colorimetric and fluorescent dual-identification of glutathione based on its inhibition on the 3D ball-flower shaped Cu-hemin-MOFS peroxidase-like activity. <i>Mikrochimica Acta</i> , 2020 , 187, 601	5.8	11
50	High-Fidelity Determination and Tracing of Small Extracellular Vesicle Cargoes. <i>Small</i> , 2020 , 16, e20028	1000	4
49	Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 379-387	9.3	19
48	Facile fabrication of fluorine-free breathable poly(methylhydrosiloxane)/polyurethane fibrous membranes with enhanced water-resistant capability. <i>Journal of Colloid and Interface Science</i> , 2019 , 556, 541-548	9.3	19
47	Corncoblike, Superhydrophobic, and Phase-Changeable Nanofibers for Intelligent Thermoregulating and Water-Repellent Fabrics. <i>ACS Applied Materials & Distriction (Control of the Control </i>	4- 3 533	3 ¹⁹
46	Introduction and Historical Overview 2019 , 3-20		4
45	Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability. <i>Composites Communications</i> , 2019 , 15, 40-45	6.7	23
44	How do proteins SesponseSto common carbon nanomaterials?. <i>Advances in Colloid and Interface Science</i> , 2019 , 270, 101-107	14.3	10
43	Preparation of Flexible Substrate Electrode for Supercapacitor With High-Performance MnO Stalagmite Nanorod Arrays. <i>Frontiers in Chemistry</i> , 2019 , 7, 338	5	3
42	Electrospun bamboo-like FeC encapsulated Fe-Si-N co-doped nanofibers for efficient oxygen reduction. <i>Journal of Colloid and Interface Science</i> , 2019 , 546, 231-239	9.3	17
41	Waterproof and Breathable Electrospun Nanofibrous Membranes. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800931	4.8	46
40	Electrospun Nanofibers for Carbon Dioxide Capture 2019 , 619-640		2

39	Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. <i>Chemosphere</i> , 2019 , 237, 124403	8.4	27
38	Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. <i>Nanoscale Horizons</i> , 2019 , 4, 867-873	10.8	26
37	Fluorescent sensor for indirect measurement of methyl parathion based on alkaline-induced hydrolysis using N-doped carbon dots. <i>Talanta</i> , 2019 , 192, 368-373	6.2	34
36	Biomimetic Fibrous Murray Membranes with Ultrafast Water Transport and Evaporation for Smart Moisture-Wicking Fabrics. <i>ACS Nano</i> , 2019 , 13, 1060-1070	16.7	77
35	Continuous, Spontaneous, and Directional Water Transport in the Trilayered Fibrous Membranes for Functional Moisture Wicking Textiles. <i>Small</i> , 2018 , 14, e1801527	11	121
34	Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. <i>ACS Applied Materials & Comp. Interfaces</i> , 2018 , 10, 30887-30894	9.5	44
33	Breathable and Colorful Cellulose Acetate-Based Nanofibrous Membranes for Directional Moisture Transport. <i>ACS Applied Materials & Directional Moisture</i> 10, 22866-22875	9.5	72
32	Ultrahigh Metal-Organic Framework Loading and Flexible Nanofibrous Membranes for Efficient CO Capture with Long-Term, Ultrastable Recyclability. <i>ACS Applied Materials & District Company</i> , 10, 348	882 ⁵ -34	8 ⁵ 8
31	Amine-impregnated porous nanofiber membranes for CO2 capture. <i>Composites Communications</i> , 2018 , 10, 45-51	6.7	14
30	Robust and Flexible Carbon Nanofibers Doped with Amine Functionalized Carbon Nanotubes for Efficient CO2 Capture. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1600028	5.9	24
29	Polyaniline Enriched Flexible Carbon Nanofibers with CoreBhell Structure for High-Performance Wearable Supercapacitors. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700855	4.6	28
28	Balsam-Pear-Skin-Like Porous Polyacrylonitrile Nanofibrous Membranes Grafted with Polyethyleneimine for Postcombustion CO Capture. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2017 , 9, 41087-41098	9.5	37
27	Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO 2 capture. <i>Composites Communications</i> , 2017 , 6, 41-47	6.7	39
26	Tailoring Differential Moisture Transfer Performance of Nonwoven/Polyacrylonitrile-SiO2 Nanofiber Composite Membranes. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700062	4.6	35
25	Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. <i>ACS Applied Materials & Description of Performance and Performan</i>	9.5	80
24	Flexible FeO@Carbon Nanofibers Hierarchically Assembled with MnO Particles for High-Performance Supercapacitor Electrodes. <i>Scientific Reports</i> , 2017 , 7, 15153	4.9	37
23	Effects of parameters of the shell formation process on the performance of microencapsulated phase change materials based on melamine-formaldehyde. <i>Textile Reseach Journal</i> , 2017 , 87, 1848-1859	1.7	10
22	Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance. <i>Separation and Purification Technology</i> 2016 , 158, 53-61	8.3	66

(2011-2016)

21	In situ synthesis of carbon nanotube doped metalBrganic frameworks for CO2 capture. <i>RSC Advances</i> , 2016 , 6, 4382-4386	3.7	26
20	Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. <i>Materials Today</i> , 2016 , 19, 403-414	21.8	304
19	Cobalt oxide nanoparticles embedded in flexible carbon nanofibers: attractive material for supercapacitor electrodes and CO2 adsorption. <i>RSC Advances</i> , 2016 , 6, 52171-52179	3.7	25
18	Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. <i>Journal of Colloid and Interface Science</i> , 2016 , 476, 87-93	9.3	63
17	Nuclear Magnetic Resonance Studies of CO2 Absorption and Desorption in Aqueous Sodium Salt of Alanine. <i>Energy & Description in Aqueous Sodium Salt of Alanine and Desorption and Desorption in Aqueous Sodium Salt of Alanine and Desorption a</i>	4.1	13
16	Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. <i>RSC Advances</i> , 2015 , 5, 91813-91820	3.7	25
15	Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. <i>Carbohydrate Polymers</i> , 2014 , 108, 192-9	10.3	74
14	Biomimetic electrospun nanofibrous structures for tissue engineering. <i>Materials Today</i> , 2013 , 16, 229-2	241 1.8	541
13	Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture. <i>ACS Applied Materials & Discrete Applied & Dis</i>	9.5	97
12	Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2978	13	88
11	Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. <i>Applied Energy</i> , 2013 , 109, 112-118	10.7	49
10	Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. <i>Progress in Materials Science</i> , 2013 , 58, 1173-1243	42.2	375
9	Novel fluorinated polybenzoxazineBilica films: chemical synthesis and superhydrophobicity. <i>RSC Advances</i> , 2012 , 2, 12804	3.7	36
8	Biomimicry via Electrospinning. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2012 , 37, 94-114	10.1	84
7	Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers. <i>Soft Matter</i> , 2011 , 7, 8376	3.6	59
6	Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. <i>Nano Today</i> , 2011 , 6, 510-530	17.9	366
5	Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 345-52	6	59
4	One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1729-34	4.8	71

3

3	A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. <i>Nanotechnology</i> , 2010 , 21, 055502	3.4	140
2	Electrospun nanomaterials for ultrasensitive sensors. <i>Materials Today</i> , 2010 , 13, 16-27	21.8	502
_	Water electret charging based polypropylene/electret masterbatch composite melt-blown		

nonwovens with enhanced charge stability for efficient air filtration. *Journal of the Textile Institute*,1-7