Lely A Quina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9317390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATION
1	Genetically Targeted Connectivity Tracing Excludes Dopaminergic Inputs to the Interpeduncular Nucleus from the Ventral Tegmentum and Substantia Nigra. ENeuro, 2021, 8, ENEURO.0127-21.2021.	0.9	5
2	Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. Journal of Comparative Neurology, 2020, 528, 283-307.	0.9	26
3	Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus. ENeuro, 2020, 7, ENEURO.0272-20.2020.	0.9	8
4	GAD2 Expression Defines a Class of Excitatory Lateral Habenula Neurons in Mice that Project to the Raphe and Pontine Tegmentum. ENeuro, 2020, 7, ENEURO.0527-19.2020.	0.9	27
5	Specific connections of the interpeduncular subnuclei reveal distinct components of the habenulopeduncular pathway. Journal of Comparative Neurology, 2017, 525, 2632-2656.	0.9	52
6	Efferent Pathways of the Mouse Lateral Habenula. Journal of Comparative Neurology, 2015, 523, 32-60.	0.9	124
7	Medial Habenula Output Circuit Mediated by α5 Nicotinic Receptor-Expressing GABAergic Neurons in the Interpeduncular Nucleus. Journal of Neuroscience, 2013, 33, 18022-18035.	1.7	74
8	Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a novel cause of congenital ear malformation. DMM Disease Models and Mechanisms, 2012, 5, 812-22.	1.2	24
9	Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion. Developmental Biology, 2012, 365, 152-163.	0.9	23
10	Brn3a and Nurr1 Mediate a Gene Regulatory Pathway for Habenula Development. Journal of Neuroscience, 2009, 29, 14309-14322.	1.7	101
11	Regulation of the development of tectal neurons and their projections by transcription factors Brn3a and Pax7. Developmental Biology, 2008, 316, 6-20.	0.9	25
12	Brn3a target gene recognition in embryonic sensory neurons. Developmental Biology, 2007, 302, 703-716.	0.9	32
13	Regulation of FGF10 by POU transcription factor Brn3a in the developing trigeminal ganglion. Journal of Neurobiology, 2006, 66, 1075-1083.	3.7	3
14	Brn3a-Expressing Retinal Ganglion Cells Project Specifically to Thalamocortical and Collicular Visual Pathways. Journal of Neuroscience, 2005, 25, 11595-11604.	1.7	161
15	Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. Journal of Neuroimmunology, 2004, 155, 43-54.	1.1	95