
John J Liggat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9317120/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Octavinyl polyhedral oligomeric silsesquioxane on tailoring the DC electrical characteristics of polypropylene. High Voltage, 2022, 7, 137-146.	2.7	6
2	Polyhydroxybutyrate: a review of experimental and simulation studies of the effect of fillers on crystallinity and mechanical properties. Polymer International, 2022, 71, 1398-1408.	1.6	16
3	Influence of Octavinyl-Polyhedral Oligomeric Silsesquioxane on the Electric Treeing Resistance of Polypropylene. , 2021, , .		Ο
4	Photoâ€oxidation of poly(ethylene terephthalate) films intended for photovoltaic backsheet. Journal of Applied Polymer Science, 2020, 137, 48623.	1.3	19
5	Effect of different surface treatment agents on the physical chemistry and electrical properties of polyethylene nanoâ€alumina nanocomposites. High Voltage, 2020, 5, 397-402.	2.7	25
6	Oxidative and non-oxidative degradation of a TDI-based polyurethane foam: Volatile product and condensed phase characterisation by FTIR and solid state 13C NMR spectroscopy. Polymer Degradation and Stability, 2019, 161, 57-73.	2.7	16
7	Filler and additive effects on partial discharge degradation of PET films used in PV devices. Polymer Degradation and Stability, 2018, 150, 148-157.	2.7	10
8	Kinetics of dissolution of glass fibre in hot alkaline solution. Journal of Materials Science, 2018, 53, 1710-1722.	1.7	35
9	Partial discharge behaviour of biaxially orientated PET films: The effect of crystalline morphology. Polymer Degradation and Stability, 2018, 155, 122-129.	2.7	8
10	The Thermal Degradation Behaviour of a Series of Siloxane Copolymers - a Study by Thermal Volatilisation Analysis. Silicon, 2016, 8, 553-562.	1.8	14
11	Accessible heavier s-block dihydropyridines: structural elucidation and reactivity of isolable molecular hydride sources. Dalton Transactions, 2016, 45, 6234-6240.	1.6	13
12	Developing Lithium Chemistry of 1,2â€Ðihydropyridines: From Kinetic Intermediates to Isolable Characterized Compounds. Chemistry - A European Journal, 2015, 21, 14410-14420.	1.7	23
13	Investigation of the strength loss of glass fibre after thermal conditioning. Journal of Materials Science, 2015, 50, 1050-1057.	1.7	45
14	Facile synthesis of a genuinely alkane-soluble but isolable lithium hydride transfer reagent. Chemical Communications, 2015, 51, 5452-5455.	2.2	51
15	Enhanced properties of graphene/fly ash geopolymeric composite cement. Cement and Concrete Research, 2015, 67, 292-299.	4.6	203
16	Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Materials and Structures, 2014, 23, 065006.	1.8	83
17	Dehydromethylation of alkali metal salts of the utility amide 2,2,6,6-tetramethylpiperidide (TMP). Chemical Communications, 2014, 50, 10588.	2.2	10
18	Thermal volatilisation analysis of TDI-based flexible polyurethane foam. Polymer Degradation and Stability, 2013, 98, 535-541.	2.7	59

John J Liggat

#	Article	IF	CITATIONS
19	Physical properties of poly(ether ether ketone) exposed to simulated severe oilfield service conditions. Polymer Degradation and Stability, 2013, 98, 1264-1270.	2.7	10
20	Ageing of poly(ethylene terephthalate) and poly(ethylene naphthalate) under moderately accelerated conditions. Journal of Applied Polymer Science, 2012, 124, 4517-4529.	1.3	10
21	Lewis acid mediated polymerization of poly(dimethylsiloxane) polymers: Investigating reaction kinetics using both NMR spectroscopy and cyclic voltammetry. Journal of Applied Polymer Science, 2012, 123, 2601-2608.	1.3	3
22	Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polymer Degradation and Stability, 2010, 95, 1099-1105.	2.7	77
23	Thermal degradation of polyethylene glycol 6000 and its effect on the assay of macroprolactin. Clinical Biochemistry, 2010, 43, 750-753.	0.8	4
24	The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polymer Degradation and Stability, 2009, 94, 1548-1557.	2.7	90
25	Effects of organically modified clay loading on rate and extent of cure in an epoxy nanocomposite system. Polymer International, 2008, 57, 1206-1214.	1.6	10
26	Influence of clay type on exfoliation, cure and physical properties of <i>in situ</i> polymerised poly(methyl methacrylate) nanocomposites. Polymer International, 2008, 57, 1118-1127.	1.6	27
27	Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 2008, 108, 2242-2251.	1.3	38
28	Investigating the ageing behavior of polysiloxane nanocomposites by degradative thermal analysis. Polymer Degradation and Stability, 2008, 93, 158-168.	2.7	45
29	Commercial fire-retarded PET formulations – Relationship between thermal degradation behaviour and fire-retardant action. Polymer Degradation and Stability, 2008, 93, 498-506.	2.7	31
30	Effect of <i>meta</i> -Carborane on Segmental Dynamics in a Bimodal Poly(dimethylsiloxane) Network. Macromolecules, 2008, 41, 9179-9186.	2.2	16
31	The stability of polysiloxanes incorporating nano-scale physical property modifiers. Science and Technology of Advanced Materials, 2008, 9, 024403.	2.8	20
32	Use of Sonication and Influence of Clay Type on the Enhancement in Physical Properties of Poly(methyl methacrylate) Nanocomposites. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
33	Thermal Volatilisation Analysis – The Development of a Novel Technique for the Analysis of Conservation Artifacts. Materials Research Society Symposia Proceedings, 2007, 1047, 5.	0.1	1
34	Properties of epoxy nanoclay system based on diaminodiphenyl sulfone and diglycidyl ether of bisphenol F: influence of post cure and structure of amine and epoxy. Polymer International, 2007, 56, 1029-1034.	1.6	14
35	In vitro and in vivo response to nanotopographically-modified surfaces of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1405-1423.	1.9	34
36	Synthesis and characterization of novel biodegradable aliphatic poly(ester amide)s containing cyclohexane units. Journal of Polymer Science Part A, 2006, 44, 1785-1795.	2.5	15

JOHN J LIGGAT

0.8

22

#	Article	IF	CITATIONS
37	Degradation mechanism of diethylene glycol units in a terephthalate polymer. Polymer Degradation and Stability, 2006, 91, 681-689.	2.7	44
38	Study of the factors influencing the exfoliation of an organically modified montmorillonite in methyl methacrylate/poly(methyl methacrylate) mixtures. Journal of Applied Polymer Science, 2006, 99, 2614-2626.	1.3	14
39	Relationship between the thermal degradation chemistry and flammability of commercial flexible polyurethane foams. Journal of Applied Polymer Science, 2006, 100, 3024-3033.	1.3	32
40	Permeability of N2, Ar, He, O2, and CO2through as-extruded amorphous and biaxially oriented polyester films: Dependence on chain mobility. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2916-2929.	2.4	12
41	Dynamic mechanical analysis of poly(trimethylene terephthalate)?A comparison with poly(ethylene) Tj ETQq1 1 C).784314 r 1.3	gBT /Overloo
42	Cross-linking of polystyrene by Friedel–Crafts chemistry: reaction of p-hydroxymethylbenzyl chloride with polystyrene. Polymer Degradation and Stability, 2001, 72, 399-405.	2.7	15
43	Solid state 13C NMR study of the char forming processes in polychloroprene. Polymer Degradation and Stability, 2001, 74, 397-405.	2.7	24
44	Solid state13C andin situ1H NMR study on the effect of melamine on the thermal degradation of a flexible polyurethane foam. Polymer International, 2000, 49, 1177-1182.	1.6	24
45	Enthalpy relaxation in poly(ethylene terephthalate) and related polyesters. Polymer International, 2000, 49, 1458-1463.	1.6	5
46	Ultrasonic degradation of polystyrene solutions. Polymer Degradation and Stability, 2000, 68, 445-449.	2.7	53
47	Thermal degradation of cross-linked polyisoprene and polychloroprene. Polymer Degradation and Stability, 2000, 68, 75-82.	2.7	40
48	Influence of Physical Aging on the Molecular Motion and Structural Relaxation in Poly(ethylene) Tj ETQq0 0 0 rgE	T /Overloc 2.2	:k 10 Tf 50 3
49	Physical ageing in poly(ethylene terephthalate)—its influence on cold crystallisation. Polymer, 1999, 40, 4977-4982.	1.8	29

Crystallization behavior of predominantly syndiotactic $poly(\hat{l}^2-hydroxybutyrate)$. Journal of Polymers and the Environment, 1995, 3, 37-47. Peripheral functionalisation of the nickel(II) complex of a tetradentate (N3O) ligand via a pendant amine substituent. Journal of the Chemical Society Dalton Transactions, 1990, , 2029.

50