Qi Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316906/publications.pdf

Version: 2024-02-01

79	3,357	38 h-index	54
papers	citations		g-index
81	81	81	3689
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcription. Acta Pharmacologica Sinica, 2022, 43, 829-839.	2.8	17
2	Tumor perivascular cell-derived extracellular vesicles promote angiogenesis via the Gas6/Axl pathway. Cancer Letters, 2022, 524, 131-143.	3.2	13
3	Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Molecular Psychiatry, 2022, 27, 1618-1629.	4.1	87
4	m6A modification: recent advances, anticancer targeted drug discovery and beyond. Molecular Cancer, 2022, 21, 52.	7.9	138
5	Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Discovery, 2022, 8, .	2.0	12
6	Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents. Translational Psychiatry, 2021, 11, 140.	2.4	49
7	Targeting the ILK/YAP axis by LFG-500 blocks epithelial–mesenchymal transition and metastasis. Acta Pharmacologica Sinica, 2021, 42, 1847-1859.	2.8	10
8	Octamer transcription factor-1 induces the Warburg effect via up-regulation of hexokinase 2 in non-small cell lung cancer. Molecular and Cellular Biochemistry, 2021, 476, 3423-3431.	1.4	5
9	Inhibition of PHLPP1/2 phosphatases rescues pancreatic \hat{I}^2 -cells in diabetes. Cell Reports, 2021, 36, 109490.	2.9	15
10	MicroRNA-197-3p mediates damage to human coronary artery endothelial cells via targeting TIMP3 in Kawasaki disease. Molecular and Cellular Biochemistry, 2021, 476, 4245-4263.	1.4	7
11	3′-Oxo-tabernaelegantine A (OTNA) selectively relaxes pulmonary arteries by inhibiting AhR. Phytomedicine, 2021, 92, 153751.	2.3	4
12	Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth. Signal Transduction and Targeted Therapy, 2020, 5, 214.	7.1	25
13	Molecular mechanisms of bufadienolides and their novel strategies for cancer treatment. European Journal of Pharmacology, 2020, 887, 173379.	1.7	22
14	Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition. Oncogene, 2020, 39, 5721-5733.	2.6	14
15	Netrin1 deficiency activates MST1 via UNC5B receptor, promoting dopaminergic apoptosis in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24503-24513.	3.3	29
16	Berberine protects Kawasaki disease-induced human coronary artery endothelial cells dysfunction by inhibiting of oxidative and endoplasmic reticulum stress. Vascular Pharmacology, 2020, 127, 106660.	1.0	26
17	Timosaponin AllI Induces G2/M Arrest and Apoptosis in Breast Cancer by Activating the ATM/Chk2 and p38 MAPK Signaling Pathways. Frontiers in Pharmacology, 2020, 11, 601468.	1.6	24
18	4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death and Disease, 2019, 10, 525.	2.7	46

#	Article	IF	CITATIONS
19	Involvement of E-cadherin/AMPK/mTOR axis in LKB1-induced sensitivity of non-small cell lung cancer to gambogic acid. Biochemical Pharmacology, 2019, 169, 113635.	2.0	14
20	Cellular energy stress induces AMPK-mediated regulation of glioblastoma cell proliferation by PIKE-A phosphorylation. Cell Death and Disease, 2019, 10, 222.	2.7	19
21	Involvement of Phosphatase and Tensin Homolog in Cyclin-Dependent Kinase 4/6 Inhibitor-Induced Blockade of Glioblastoma. Frontiers in Pharmacology, 2019, 10, 1316.	1.6	3
22	Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein. Cancer Cell International, 2018, 18, 209.	1.8	15
23	Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1. Journal of Molecular Cell Biology, 2018, 10, 549-558.	1.5	9
24	AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay. Molecular Pharmacology, 2017, 91, 339-347.	1.0	27
25	The OncoPPi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies. Nature Communications, 2017, 8, 14356.	5.8	151
26	Blockade of Asparagine Endopeptidase Inhibits Cancer Metastasis. Journal of Medicinal Chemistry, 2017, 60, 7244-7255.	2.9	27
27	Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget, 2017, 8, 28359-28372.	0.8	20
28	Gambogic acid potentiates clopidogrel-induced apoptosis and attenuates irinotecan-induced apoptosis through down-regulating human carboxylesterase 1 and -2. Xenobiotica, 2016, 46, 816-824.	0.5	9
29	Involvement of RECK in gambogic acid induced antiâ€invasive effect in A549 human lung carcinoma cells. Molecular Carcinogenesis, 2015, 54, E13-25.	1.3	37
30	Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7255-7260.	3.3	34
31	Synergistic suppression of noscapine and conventional chemotherapeutics on human glioblastoma cell growth. Acta Pharmacologica Sinica, 2013, 34, 930-938.	2.8	37
32	Differential proteomic analysis of caveolin-1 KO cells reveals Sh2b3 and Clec12b as novel interaction partners of caveolin-1 and Capns1 as a potential mediator of caveolin-1-induced apoptosis. Analyst, The, 2013, 138, 6986.	1.7	5
33	O-Methylated Metabolite of 7,8-Dihydroxyflavone Activates TrkB Receptor and Displays Antidepressant Activity. Pharmacology, 2013, 91, 185-200.	0.9	61
34	Blockade of Glioma Proliferation Through Allosteric Inhibition of JAK2. Science Signaling, 2013, 6, ra55.	1.6	23
35	The roles of PIKE in tumorigenesis. Acta Pharmacologica Sinica, 2013, 34, 991-997.	2.8	10
36	Disrupting the PIKE-A/Akt interaction inhibits glioblastoma cell survival, migration, invasion and colony formation. Oncogene, 2013, 32, 1030-1040.	2.6	17

#	Article	IF	Citations
37	Acridine Yellow G Blocks Glioblastoma Growth via Dual Inhibition of Epidermal Growth Factor Receptor and Protein Kinase C Kinases. Journal of Biological Chemistry, 2012, 287, 6113-6127.	1.6	11
38	Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochemistry and Cell Biology, 2012, 90, 718-730.	0.9	56
39	Optimization of a Small Tropomyosin-Related Kinase B (TrkB) Agonist 7,8-Dihydroxyflavone Active in Mouse Models of Depression. Journal of Medicinal Chemistry, 2012, 55, 8524-8537.	2.9	54
40	The association of phosphoinositide 3â€kinase enhancer A with hepatic insulin receptor enhances its kinase activity. EMBO Reports, 2011, 12, 847-854.	2.0	11
41	Gambogic acid inhibits tumor cell adhesion by suppressing integrin \hat{I}^21 and membrane lipid rafts-associated integrin signaling pathway. Biochemical Pharmacology, 2011, 82, 1873-1883.	2.0	57
42	Gambogic acidâ€induced degradation of mutant p53 is mediated by proteasome and related to CHIP. Journal of Cellular Biochemistry, 2011, 112, 509-519.	1.2	52
43	Oroxylin A induces G2/M phase cell-cycle arrest via inhibiting Cdk7-mediated expression of Cdc2/p34 in human gastric carcinoma BGC-823 cells. Journal of Pharmacy and Pharmacology, 2010, 60, 1459-1463.	1.2	17
44	Synergistic effect of 5-fluorouracil and the flavanoid oroxylin A on HepG2 human hepatocellular carcinoma and on H22 transplanted mice. Cancer Chemotherapy and Pharmacology, 2010, 65, 481-489.	1.1	40
45	Oroxylin A inhibits angiogenesis through blocking vascular endothelial growth factor-induced KDR/Flk-1 phosphorylation. Journal of Cancer Research and Clinical Oncology, 2010, 136, 667-675.	1.2	36
46	Breviscapineâ€induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Phytotherapy Research, 2010, 24, 1188-1194.	2.8	16
47	Gambogic acid triggers DNA damage signaling that induces p53/p21Waf1/CIP1 activation through the ATR-Chk1 pathway. Cancer Letters, 2010, 296, 55-64.	3.2	61
48	A conserved sequence in caveolinâ€1 is both necessary and sufficient for caveolin polarity and cell directional migration. FEBS Letters, 2009, 583, 3681-3689.	1.3	15
49	Oroxylin A suppresses invasion through down-regulating the expression of matrix metalloproteinase-2/9 in MDA-MB-435 human breast cancer cells. European Journal of Pharmacology, 2009, 603, 22-28.	1.7	65
50	Involvement of p53 in oroxylin Aâ€induced apoptosis in cancer cells. Molecular Carcinogenesis, 2009, 48, 1159-1169.	1.3	53
51	Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. Journal of Cancer Research and Clinical Oncology, 2009, 135, 1777-1782.	1.2	64
52	Synergistic effect of 5-fluorouracil with gambogic acid on BGC-823 human gastric carcinoma. Toxicology, 2009, 256, 135-140.	2.0	41
53	Toxicological studies of wogonin in experimental animals. Phytotherapy Research, 2009, 23, 417-422.	2.8	37
54	Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology, 2009, 257, 80-85.	2.0	89

#	Article	IF	CITATIONS
55	Wogonoside inhibits lipopolysaccharide-induced angiogenesis in vitro and in vivo via toll-like receptor 4 signal transduction. Toxicology, 2009, 259, 10-17.	2.0	57
56	Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells. Toxicology, 2009, 260, 60-67.	2.0	81
57	Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Letters, 2009, 279, 13-21.	3.2	170
58	Gambogic acid down-regulates MDM2 oncogene and induces p21Waf1/CIP1 expression independent of p53. Cancer Letters, 2009, 284, 102-112.	3.2	49
59	MAC related mitochondrial pathway in oroxylin A induces apoptosis in human hepatocellular carcinoma HepG2 cells. Cancer Letters, 2009, 284, 198-207.	3.2	41
60	Macranthoside B, a hederagenin saponin extracted from Lonicera macranthoides and its anti-tumor activities in vitro and in vivo. Food and Chemical Toxicology, 2009, 47, 1716-1721.	1.8	65
61	Asparanin A induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochemical and Biophysical Research Communications, 2009, 381, 700-705.	1.0	55
62	LYG-202, a new flavonoid with a piperazine substitution, shows antitumor effects in vivo and in vitro. Biochemical and Biophysical Research Communications, 2009, 385, 551-556.	1.0	30
63	Subchronic toxicity and plasma pharmacokinetic studies on wogonin, a natural flavonoid, in Beagle dogs. Journal of Ethnopharmacology, 2009, 124, 257-262.	2.0	32
64	Wogonin induces G $<$ sub $>$ 1 $<$ /sub $>$ phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21 $<$ sup $>$ Cip1 $<$ /sup $>$ in human cervical carcinoma HeLa cells. Biochemistry and Cell Biology, 2009, 87, 933-942.	0.9	49
65	Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. Journal of Molecular Medicine, 2008, 86, 1367-1377.	1.7	56
66	Anti-invasive effect of gambogic acid in MDA-MB-231 human breast carcinoma cells. Biochemistry and Cell Biology, 2008, 86, 386-395.	0.9	50
67	Wogonin induces the granulocytic differentiation of human NB4 promyelocytic leukemia cells and up-regulates phospholipid scramblase 1 gene expression. Cancer Science, 2008, 99, 689-695.	1.7	40
68	Inhibition of glioblastoma growth and angiogenesis by gambogic acid: An in vitro and in vivo study. Biochemical Pharmacology, 2008, 75, 1083-1092.	2.0	77
69	Inhibition of $\hat{l}\pm4$ integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with Gambogic acid. European Journal of Pharmacology, 2008, 589, 127-131.	1.7	42
70	Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sciences, 2008, 82, 956-963.	2.0	81
71	Microtubule depolymerization and phosphorylation of c-Jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells. Life Sciences, 2008, 83, 103-109.	2.0	71
72	Studies on the toxicity of gambogic acid in rats. Journal of Ethnopharmacology, 2008, 117, 433-438.	2.0	73

#	Article	IF	CITATION
73	Gambogic acid induced tumor cell apoptosis by T lymphocyte activation in H22 transplanted mice. International Immunopharmacology, 2008, 8, 1493-1502.	1.7	30
74	Posttranscriptional regulation of the telomerase hTERT by gambogic acid in human gastric carcinoma 823 cells. Cancer Letters, 2008, 262, 223-231.	3.2	48
75	Endostar Suppresses Invasion Through Downregulating the Expression of Matrix Metalloproteinase-2/9 in MDA-MB-435 Human Breast Cancer Cells. Experimental Biology and Medicine, 2008, 233, 1013-1020.	1.1	47
76	Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells. Molecular Cancer Therapeutics, 2008, 7, 3298-3305.	1.9	84
77	Oroxylin A induces G ₂ /M phase cell-cycle arrest via inhibiting Cdk7-mediated expression of Cdc2/p34 in human gastric carcinoma BGC-823 cells. Journal of Pharmacy and Pharmacology, 2008, 60, 1459-1463.	1.2	30
78	Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells. Life Sciences, 2006, 78, 1238-1245.	2.0	99
79	Toxicological Studies of Gambogic Acid and its Potential Targets in Experimental Animals. Basic and Clinical Pharmacology and Toxicology, 2006, 99, 178-184.	1.2	57