
Nabeel Khan Niazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 2017, 182, 247-268.	3.2	877
2	Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 2017, 178, 513-533.	8.2	735
3	Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 2017, 325, 36-58.	12.4	720
4	Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. International Journal of Environmental Research and Public Health, 2018, 15, 59.	2.6	541
5	Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu,) Tj ETQq1 1	0.784314	∙rg₿Ţ /Overld
6	Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews, 2019, 64, 216-247.	19.3	355
7	A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 2018, 234, 915-934.	7.5	328
8	Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 2018, 232, 31-41.	7.5	297
9	A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 2019, 127, 819-847.	10.0	280
10	Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 2018, 200, 274-282.	8.2	254
11	A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 2020, 396, 125195.	12.7	243
12	A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. International Journal of Environmental Research and Public Health, 2018, 15, 895.	2.6	234
13	Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2275-2330.	12.8	194
14	Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 2018, 621, 1642-1651.	8.0	175
15	A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environmental Pollution, 2018, 242, 307-319.	7.5	175
16	Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 2017, 576, 766-774.	8.0	172
17	Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Reviews of Environmental Contamination and Toxicology, 2016, 241, 73-137.	1.3	171
18	Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Critical Reviews in Environmental Science and Technology, 2016, 46, 467-499.	12.8	161

#	Article	IF	CITATIONS
19	Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 2015, 12, 12371-12390.	2.6	157
20	A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment, 2020, 711, 134749.	8.0	153
21	Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. Journal of Hazardous Materials, 2021, 403, 123854.	12.4	144
22	Arsenic Speciation and Phytoavailability in Contaminated Soils Using a Sequential Extraction Procedure and XANES Spectroscopy. Environmental Science & Technology, 2011, 45, 7135-7142.	10.0	140
23	Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. International Journal of Phytoremediation, 2017, 19, 605-613.	3.1	135
24	Exploring the arsenic removal potential of various biosorbents from water. Environment International, 2019, 123, 567-579.	10.0	130
25	A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 2020, 711, 134645.	8.0	130
26	The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 2018, 199, 737-746.	8.2	119
27	Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition. Environmental Pollution, 2016, 218, 111-117.	7.5	115
28	Phosphate-assisted phytoremediation of arsenic by <i>Brassica napus</i> and <i>Brassica juncea</i> : Morphological and physiological response. International Journal of Phytoremediation, 2017, 19, 670-678.	3.1	112
29	Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials, 2021, 403, 124027.	12.4	111
30	A review of biochar-based sorbents for separation of heavy metals from water. International Journal of Phytoremediation, 2020, 22, 111-126.	3.1	110
31	Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of <i>Pisum sativum</i> . International Journal of Phytoremediation, 2017, 19, 662-669.	3.1	100
32	Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 2021, 773, 145040.	8.0	100
33	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Science of the Total Environment, 2021, 780, 146274.	8.0	97
34	Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 2018, 645, 1444-1455.	8.0	96
35	Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environmental Science and Pollution Research, 2019, 26, 20018-20029.	5.3	96
36	Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: Implications for health risk assessment and phytoremediation. International Journal of Phytoremediation, 2017, 19, 1037-1046.	3.1	92

#	Article	IF	CITATIONS
37	Trace elements-induced phytohormesis: A critical review and mechanistic interpretation. Critical Reviews in Environmental Science and Technology, 2020, 50, 1984-2015.	12.8	92
38	Arsenic(V) biosorption by charred orange peel in aqueous environments. International Journal of Phytoremediation, 2016, 18, 442-449.	3.1	90
39	Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development, 2018, 29, 2162-2171.	3.9	89
40	Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. Journal of Hazardous Materials, 2022, 425, 127971.	12.4	89
41	Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. Journal of Geochemical Exploration, 2017, 178, 83-91.	3.2	81
42	Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Science of the Total Environment, 2019, 672, 572-582.	8.0	79
43	Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health, 2020, 42, 121-133.	3.4	79
44	Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renewable and Sustainable Energy Reviews, 2022, 153, 111791.	16.4	78
45	Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environmental Science and Pollution Research, 2012, 19, 3506-3515.	5.3	76
46	Arsenic Level and Risk Assessment of Groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health, 2018, 10, 229-239.	4.9	76
47	Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. Journal of Soils and Sediments, 2014, 14, 666-678.	3.0	75
48	Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. International Journal of Environmental Science and Technology, 2015, 12, 1965-1974.	3.5	74
49	Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere, 2022, 286, 131790.	8.2	73
50	Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 2021, 51, 1727-1865.	12.8	70
51	Comparative efficiency of peanut shell and peanut shell biochar for removal of arsenic from water. Environmental Science and Pollution Research, 2019, 26, 18624-18635.	5.3	69
52	Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environmental Science and Pollution Research, 2016, 23, 22890-22896.	5.3	67
53	Zinc in soil-plant-human system: A data-analysis review. Science of the Total Environment, 2022, 808, 152024.	8.0	67
54	Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences.		66

, 2017, , 97-140.

#	Article	IF	CITATIONS
55	Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil. Sustainability, 2017, 9, 266.	3.2	65
56	Synthesis of nitrogen-doped Ceria nanoparticles in deep eutectic solvent for the degradation of sulfamethaxazole under solar irradiation and additional antibacterial activities. Chemical Engineering Journal, 2020, 394, 124869.	12.7	65
57	Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 2021, 419, 126421.	12.4	65
58	Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2803-2843.	12.8	63
59	Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology, 2022, 346, 126581.	9.6	60
60	Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Advances, 2020, 10, 23221-23232.	3.6	56
61	A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environmental Geochemistry and Health, 2023, 45, 5599-5618.	3.4	54
62	Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review. Biochar, 2022, 4, 1.	12.6	54
63	Arsenic accumulation and physiological attributes of spinach in the presence of amendments: an implication to reduce health risk. Environmental Science and Pollution Research, 2017, 24, 16097-16106.	5.3	53
64	Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health. Applied Geochemistry, 2019, 106, 45-59.	3.0	53
65	Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Science of the Total Environment, 2018, 640-641, 1424-1431.	8.0	52
66	Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environmental Science and Pollution Research, 2019, 26, 10496-10514.	5.3	52
67	Health risks of arsenic buildup in soil and food crops after wastewater irrigation. Science of the Total Environment, 2021, 772, 145266.	8.0	52
68	Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. Journal of Hazardous Materials, 2022, 422, 126926.	12.4	52
69	A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. Journal of Soils and Sediments, 2018, 18, 2271-2281.	3.0	51
70	Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. International Journal of Phytoremediation, 2017, 19, 1029-1036.	3.1	50
71	Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. International Journal of Phytoremediation, 2019, 21, 509-518.	3.1	48
72	A multivariate analysis of physiological and antioxidant responses and health hazards of wheat under cadmium and lead stress. Environmental Science and Pollution Research, 2019, 26, 362-370.	5.3	46

#	Article	IF	CITATIONS
73	Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan. Journal of Hazardous Materials, 2021, 402, 124074.	12.4	46
74	Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: Effect of soil amendments. Chemosphere, 2019, 225, 104-114.	8.2	45
75	Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environmental Science and Pollution Research, 2019, 26, 20121-20131.	5.3	44
76	Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure. Chemosphere, 2020, 243, 125331.	8.2	44
77	Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems. Journal of Hazardous Materials, 2021, 414, 125439.	12.4	44
78	Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L. International Journal of Environmental Science and Technology, 2015, 12, 3981-3992.	3.5	43
79	Phytoremediation of Cadmium-Polluted Water/Sediment by Aquatic Macrophytes: Role of Plant-Induced pH Changes. , 2019, , 495-529.		43
80	Sorption of lead in soil amended with coconut fiber biochar: Geochemical and spectroscopic investigations. Geoderma, 2019, 350, 52-60.	5.1	43
81	Evaluation of Spatial Variability of Soil Arsenic Adjacent to a Disused Cattle-Dip Site, Using Model-Based Geostatistics. Environmental Science & Technology, 2011, 45, 10463-10470.	10.0	39
82	Synergistic effects of bismuth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution. Science of the Total Environment, 2019, 669, 333-341.	8.0	39
83	Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. Environmental Pollution, 2022, 299, 118810.	7.5	38
84	Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties. Sustainability, 2017, 9, 310.	3.2	34
85	Characterization of pig manure-derived hydrochars for their potential application as fertilizer. Environmental Science and Pollution Research, 2018, 25, 25772-25779.	5.3	34
86	Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environmental Pollution, 2021, 268, 115829.	7.5	34
87	Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. Journal of Soils and Sediments, 2019, 19, 2313-2321.	3.0	33
88	Impact of genetically modified crops on rhizosphere microorganisms and processes: A review focusing on Bt cotton. Applied Soil Ecology, 2020, 148, 103492.	4.3	33
89	Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. Journal of Hazardous Materials, 2022, 427, 128131.	12.4	31
90	Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental Science and Pollution Research, 2018, 25, 2958-2971.	5.3	29

#	Article	IF	CITATIONS
91	Prevalence of SARS-CoV-2 in Communities Through Wastewater Surveillance—a Potential Approach for Estimation of Disease Burden. Current Pollution Reports, 2021, 7, 160-166.	6.6	29
92	Arsenic tolerance and phytoremediation potential of <i>Conocarpus erectus</i> L. and <i>Populus deltoides</i> L. International Journal of Phytoremediation, 2017, 19, 985-991.	3.1	28
93	Cadmium tolerance and phytoremediation potential of acacia (<i>Acacia nilotica</i> L.) under salinity stress. International Journal of Phytoremediation, 2018, 20, 739-746.	3.1	28
94	Risk assessment of potentially toxic metal(loid)s in Vigna radiata L. under wastewater and freshwater irrigation. Chemosphere, 2021, 265, 129124.	8.2	28
95	Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation, 2018, 29, 323-337.	3.0	27
96	Phytoremediation Potential of <i>Pityrogramma Calomelanos</i> Var. <i>Austroamericana</i> and <i>Pteris Vittata</i> L. Grown at a Highly Variable Arsenic Contaminated Site. International Journal of Phytoremediation, 2011, 13, 912-932.	3.1	26
97	Research on characteristics of heavy metals (As, Cd, Zn) in coal from Southwest China and prevention method by using modified calcium-based materials. Fuel, 2016, 186, 714-725.	6.4	26
98	Geochemical control on spatial variability of fluoride concentrations in groundwater from rural areas of Gujrat in Punjab, Pakistan. Environmental Earth Sciences, 2016, 75, 1.	2.7	26
99	Plant growth promotion and enhanced uptake of Cd by combinatorial application of <i>Bacillus pumilus</i> and EDTA on <i>Zea mays</i> L International Journal of Phytoremediation, 2020, 22, 1372-1384.	3.1	26
100	Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. Chemosphere, 2022, 303, 134942.	8.2	26
101	Arsenic Environmental Contamination Status in South Asia. , 2020, , 13-39.		25
102	Nitrogen fertilizer enhances zinc and cadmium uptake by hyperaccumulator Sedum alfredii Hance. Journal of Soils and Sediments, 2020, 20, 320-329.	3.0	25
103	Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater. Agricultural Water Management, 2021, 247, 106720.	5.6	25
104	Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health, 2019, 41, 1777-1791.	3.4	24
105	Multivariate Analysis of Grain Yield and Its Attributing Traits in Different Maize Hybrids Grown under Heat and Drought Stress. Scientifica, 2015, 2015, 1-6.	1.7	23
106	Lead and copper-induced hormetic effect and toxicity mechanisms in lettuce (Lactuca sativa L.) grown in a contaminated soil. Science of the Total Environment, 2020, 741, 140440.	8.0	22
107	Effect of Eucalyptus forests on understory vegetation and soil quality. Journal of Soils and Sediments, 2017, 17, 2383-2389.	3.0	21
108	Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. Comprehensive Analytical Chemistry, 2019, 85, 15-51.	1.3	21

#	Article	IF	CITATIONS
109	Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar, 2022, 4, 1.	12.6	21
110	Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. Environmental Pollution, 2022, 307, 119492.	7.5	21
111	Removal and Recovery of Metals by Biosorbents and Biochars Derived From Biowastes. , 2016, , 149-177.		18
112	Bioaccumulation of Potentially Toxic Elements in Cereal and Legume Crops: A Review. Clean - Soil, Air, Water, 2017, 45, 1700548.	1.1	18
113	Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts. Reviews of Environmental Contamination and Toxicology, 2019, 253, 65-113.	1.3	18
114	Clay Minerals. , 2016, , 543-567.		17
115	Impact of organic and inorganic amendments on arsenic accumulation by rice genotypes under paddy soil conditions: A pilot-scale investigation to assess health risk. Journal of Hazardous Materials, 2021, 420, 126620.	12.4	17
116	Unveiling the Efficiency of Vermicompost Derived from Different Biowastes on Wheat (Triticum) Tj ETQq0 0 0 ا	gBT /Overlo	ock 10 Tf 50 4
117	Wetting-drying cycles during a rice-wheat crop rotation rapidly (im)mobilize recalcitrant soil phosphorus. Journal of Soils and Sediments, 2020, 20, 3921-3930.	3.0	16
118	Alleviation of Nickel-Induced Stress in Mungbean through Application of Gibberellic Acid. International Journal of Agriculture and Biology, 2015, 17, 990-994.	0.4	16
119	The significance of eighteen rice genotypes on arsenic accumulation, physiological response and potential health risk. Science of the Total Environment, 2022, 832, 155004.	8.0	15
120	Impact of biosolid application rates on competitive sorption and distribution coefficients of Cd, Cu, Ni, Pb, and Zn in an Alfisol and an Entisol. Chemical Engineering Research and Design, 2018, 115, 38-48.	5.6	13
121	Comparative effect of organic amendments on physio-biochemical traits of young and old bean leaves grown under cadmium stress: a multivariate analysis. Environmental Science and Pollution Research, 2019, 26, 11579-11590.	5.3	13
122	Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban. Environmental Geochemistry and Health, 2019, 41, 275-296.	3.4	13
123	Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan. Forests, 2019, 10, 640.	2.1	13
124	Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils. , 2019, , 255-274.		13
125	Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using <i>Zea mays</i> L. in contrasting textured soils. International Journal of Phytoremediation, 2021, 23, 899-910.	3.1	13
126	Hydrogeochemical and health risk investigation of potentially toxic elements in groundwater along River Sutlej floodplain in Punjab, Pakistan. Environmental Geochemistry and Health, 2021, 43, 5195-5209.	3.4	12

#	Article	IF	CITATIONS
127	Arsenic-induced oxidative stress in Brassica oleracea: Multivariate and literature data analyses of physiological parameters, applied levels and plant organ type. Environmental Geochemistry and Health, 2022, 44, 1827-1839.	3.4	12
128	The role of various ameliorants on geochemical arsenic distribution and CO2-carbon efflux under paddy soil conditions. Environmental Geochemistry and Health, 2023, 45, 507-523.	3.4	12
129	Pesticides Pollution in Agricultural Soils of Pakistan. , 2016, , 199-229.		11
130	Use of agricultural bio-wastes to remove arsenic from contaminated water. Environmental Geochemistry and Health, 2020, , 1.	3.4	11
131	Elucidating the Potential of Vertical Flow-Constructed Wetlands Vegetated with Different Wetland Plant Species for the Remediation of Chromium-Contaminated Water. Sustainability, 2022, 14, 5230.	3.2	11
132	Phytoremediation of Arsenic-Contaminated Soils Using Arsenic Hyperaccumulating Ferns. , 2016, , 521-545.		10
133	Recent Advances in Arsenic Accumulation in Rice. , 2019, , 385-398.		10
134	Effects of Lead Salts on Growth, Chlorophyll Contents and Tissue Concentration of Rice Genotypes. International Journal of Agriculture and Biology, 2017, 19, 69-76.	0.4	10
135	A multivariate analysis of health risk assessment, phytoremediation potential, and biochemical attributes of <i>Spinacia oleracea</i> exposed to cadmium in the presence of organic amendments under hydroponic conditions. International Journal of Phytoremediation, 2019, 21, 461-470.	3.1	9
136	The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. Environmental Geochemistry and Health, 2021, 43, 5037-5051.	3.4	9
137	Soil Contaminants: Sources, Effects, and Approaches for Remediation. , 2014, , 171-196.		9
138	BIOMASS, CARBON STOCKS AND CO2 SEQUESTRATION IN THREE DIFFERENT AGED IRRIGATED POPULUS DELTOIDES BARTR. EX MARSH. BUND PLANTING AGROFORESTRY SYSTEMS. Applied Ecology and Environmental Research, 2018, 16, 6239-6252.	0.5	9
139	Early detection of the effects of compaction in forested soils: evidence from selective extraction techniques. Journal of Soils and Sediments, 2016, 16, 2223-2233.	3.0	8
140	Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (<i>Zea mays</i> L.) plants. International Journal of Phytoremediation, 2021, 23, 1-12.	3.1	8
141	A meta-analysis of photocatalytic performance and efficiency of bismuth oxide (BiO2_x). Journal of Cleaner Production, 2021, 322, 129070.	9.3	8
142	A modeling approach for unveiling adsorption of toxic ions on iron oxide nanocrystals. Journal of Hazardous Materials, 2021, 417, 126005.	12.4	7
143	Phytoremediation of Agricultural Pollutants. Concepts and Strategies in Plant Sciences, 2020, , 27-81.	O.5	7

Biochar: A Game Changer for Sustainable Agriculture. , 2022, , 143-157.

#	Article	IF	CITATIONS
145	Exploring the potential of nano-zerovalent copper modified biochar for the removal of ciprofloxacin from water. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100604.	2.9	6
146	Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate. Materials Reports Energy, 2022, 2, 100139.	3.2	6
147	COMPARATIVE TOLERANCE AND PHYTOSTABILIZATION POTENTIAL OF Conocarpus erectus AND Eucalyptus camaldulensis GROWN IN CADMIUM CONTAMINATED SOIL. Pakistan Journal of Agricultural Sciences, 2018, 55, 521-529.	0.2	5
148	Better management of groundwater needed in Pakistan. Nature, 2018, 554, 300-300.	27.8	4
149	Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulatory Networks. , 2019, , 71-105.		3
150	Recent developments in phosphate-assisted phytoremediation of potentially toxic metal(loid)s-contaminated soils. , 2022, , 345-370.		3
151	Impacts of Water Quality on Human Health in Pakistan. World Water Resources, 2021, , 225-247.	0.4	2
152	Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water. , 2021, , 325-361.		2
153	Effect of Substrate Dependent Ethylene on Cotton (Gossypium hirsutumL.) at Physiological and Molecular Levels Under Salinity Stress. Journal of Plant Nutrition, 2015, 38, 1913-1928.	1.9	1
154	Current Approaches for the Assessment of In Situ Remediation of Xenobiotics. Soil Biology, 2017, , 171-196.	0.8	1
155	Targeting Cd coping mechanisms for stress tolerance in Brassica napus under spiked-substrate system: from physiology to remediation perspective. International Journal of Phytoremediation, 2021, , 1-15.	3.1	1
156	Soil silicon fractions along karst hillslopes of southwestern China. Journal of Soils and Sediments, 0, , 1.	3.0	1
157	Application of magnetic biochars for the removal of aquatic pollutants. , 2022, , 393-419.		1
158	Letter to the Editor regarding, "First evidence on different transportation modes ofÂarsenic and phosphorus in arsenic hyperaccumulator Pteris vittata―by Lei etÂal. (2012). Environmental Pollution, 2012, 165, 167.	7.5	0
159	Injustices of foreign investment in coal. Science, 2018, 360, 1081-1081.	12.6	0
160	Biogeochemical Behavior of Arsenic in Biochar-Amended Soils. , 2018, , 83-104.		0
161	Groundwater Arsenic Geochemical Cycling and Risk along Different Flood Plains of Pakistan. , 2020, , .		0

162 Unveiling Dolomite Surface Rate Variability Using Vertical Scanning Interferometry. , 2020, , .