Guo-She Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316362/publications.pdf

Version: 2024-02-01

1040056 940533 20 251 9 16 citations h-index g-index papers 20 20 20 345 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Contributions of Forward-Focused Voice to Audio-Vocal Feedback Measured Using Nasal Accelerometry and Power Spectral Analysis of Vocal Fundamental Frequency. Journal of Speech, Language, and Hearing Research, 2022, 65, 1751-1766.	1.6	O
2	Hypernasality after the endoscopic modified Lothrop procedure for refractory frontal sinusitis. International Forum of Allergy and Rhinology, 2021, 11, 1260-1263.	2.8	2
3	Screening Severe Obstructive Sleep Apnea in Children with Snoring. Diagnostics, 2021, 11, 1168.	2.6	7
4	Snoring Sound Characteristics are Associated with Common Carotid Artery Profiles in Patients with Obstructive Sleep Apnea. Nature and Science of Sleep, 2021, Volume 13, 1243-1255.	2.7	4
5	Vocal fold nodules: A disorder of phonation organs or auditory feedback?. Clinical Otolaryngology, 2019, 44, 975-982.	1.2	5
6	Snoring sound energy as a potential biomarker for disease severity and surgical response in childhood obstructive sleep apnoea: A pilot study. Clinical Otolaryngology, 2019, 44, 47-52.	1.2	9
7	Saccadic entropy of head impulses in acute unilateral vestibular loss. Journal of the Formosan Medical Association, 2017, 116, 790-797.	1.7	O
8	Responses of Middle-Frequency Modulations in Vocal Fundamental Frequency to Different Vocal Intensities and Auditory Feedback. Journal of Voice, 2017, 31, 536-544.	1.5	4
9	The Frequency and Energy of Snoring Sounds Are Associated with Common Carotid Artery Intima-Media Thickness in Obstructive Sleep Apnea Patients. Scientific Reports, 2016, 6, 30559.	3.3	33
10	Audio–vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises. Hearing Research, 2015, 324, 1-6.	2.0	7
11	Influences of monocular and binocular vision on postural stability. Journal of Vestibular Research: Equilibrium and Orientation, 2015, 25, 15-21.	2.0	11
12	Aging of vestibular function evaluated using correlational vestibular autorotation test. Clinical Interventions in Aging, 2014, 9, 1463.	2.9	14
13	Effects of cold exposure on autonomic changes during the last rapid eye movement sleep transition and morning blood pressure surge in humans. Sleep Medicine, 2014, 15, 986-997.	1.6	16
14	Effects of hearing aid amplification on voice F0 variability in speakers with prelingual hearing loss. Hearing Research, 2013, 302, 1-8.	2.0	8
15	Cochlear Dead Region and Word Recognition of Mandarin Chinese in Taiwan. Chinese Journal of Physiology, 2013, 56, 129-37.	1.0	O
16	Variability in Voice Fundamental Frequency ofÂSustained Vowels in Speakers With Sensorineural Hearing Loss. Journal of Voice, 2012, 26, 24-29.	1.5	18
17	Evoked response of heart rate variability using short-duration white noise. Autonomic Neuroscience: Basic and Clinical, 2010, 155, 94-97.	2.8	62
18	Evaluation of Hypernasality in Vowels Using Voice Low Tone to High Tone Ratio. Cleft Palate-Craniofacial Journal, 2009, 46, 47-52.	0.9	28

Guo-She Lee

#	Article	IF	CITATIONS
19	Changes of Rhythm of Vocal Fundamental Frequency in Sensorineural Hearing Loss and in Parkinson's Disease. Chinese Journal of Physiology, 2009, 52, 446-450.	1.0	10
20	Effects of Speech Noise on Vocal Fundamental Frequency Using Power Spectral Analysis. Ear and Hearing, 2007, 28, 343-350.	2.1	13