Daniel Rittel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Static and dynamic mechanical properties of wire and arc additively manufactured SS316L and ER70S6. Mechanics of Materials, 2022, 164, 104108.	1.7	3
2	The Effect of Heat Treatment on the Mechanical Behavior of Commercially Pure Titanium and Zirconium Under Quasi-static and Dynamic Loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 900-914.	1.1	1
3	Shock energy attenuation of liquid aqueous methylcellulose hydrogels. Extreme Mechanics Letters, 2022, 51, 101586.	2.0	2
4	Probing the sensitivity of the resonant frequency analysis to the dental implant-bone condition: A numerical study. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105128.	1.5	3
5	Architecture effects for mode I trans-laminar fracture in over-height compact tension tests: Damage propagation and fracture response. Composites Part A: Applied Science and Manufacturing, 2022, 159, 106987.	3.8	6
6	Impact energy absorption behavior of graphene aerogels prepared by different drying methods. Materials and Design, 2022, 221, 110912.	3.3	10
7	Shock attenuation characteristics of methylcellulose hydrogels: Phenomenological modeling. Journal of the Mechanics and Physics of Solids, 2021, 146, 104220.	2.3	2
8	The normal stiffness of the edentulous alveolar process. Bone Reports, 2021, 14, 101066.	0.2	2
9	A stochastic micro to macro mechanical model for the evolution of bone-implant interface stiffness. Acta Biomaterialia, 2021, 131, 415-423.	4.1	11
10	Hyperelastic modeling of solid methyl cellulose hydrogel under quasi-static compression. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104857.	1.5	6
11	Numerical investigation of polyurea coated aluminum plates under hydrodynamic shocks. Thin-Walled Structures, 2021, 166, 108074.	2.7	10
12	Modelling ballistic perforation of soda-lime glass using ductile and brittle incubation time fracture criteria. Engineering Fracture Mechanics, 2020, 225, 106407.	2.0	2
13	The mechanical response of Hysol 4183 under constant strain rate loading and creep. Mechanics of Time-Dependent Materials, 2020, 24, 301-315.	2.3	2
14	Linear and Nonlinear Shock Attenuation of Aqueous Methylcellulose Solutions. International Journal of Impact Engineering, 2020, 136, 103392.	2.4	2
15	Modeling ultrasonic wave propagation in a dental implant - Bone system. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103547.	1.5	7
16	Effect of target velocity on damage patterns in hypervelocity glancing collisions. International Journal of Impact Engineering, 2020, 144, 103664.	2.4	5
17	Finite element modeling of multiple water droplets impact onto a rough surface: Re-assessing Sa and surface wavelength. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103816.	1.5	3
18	Experimental investigation of polyurea coated aluminum plates under strong hydrodynamic shocks. Thin-Walled Structures, 2020, 154, 106833.	2.7	16

#	Article	IF	CITATIONS
19	High-speed infrared thermal measurements of impacted metallic solids. MethodsX, 2020, 7, 100914.	0.7	8
20	Mitigation of shock loading on structures using aqueous methylcellulose solution. International Journal of Impact Engineering, 2020, 140, 103547.	2.4	4
21	Static and dynamic shear-compression response of additively manufactured Ti6Al4V specimens with embedded voids. Mechanics of Materials, 2020, 147, 103413.	1.7	18
22	Random spectrum fatigue of zirconia oral implants in air and saline solution. Engineering Failure Analysis, 2019, 106, 104160.	1.8	1
23	Modeling the topographic evolution of a rough metallic surface resulting from impact of water droplets. International Journal of Engineering Science, 2019, 144, 103142.	2.7	5
24	The static and dynamic shear-tension mechanical response of AM Ti6Al4V containing spherical and prolate voids. International Journal of Engineering Science, 2019, 141, 1-15.	2.7	14
25	Resonant frequency analysis of dental implants. Medical Engineering and Physics, 2019, 66, 65-74.	0.8	17
26	Design principles of biologically fabricated avian nests. Scientific Reports, 2019, 9, 4792.	1.6	11
27	Mechanical reinforcement of methylcellulose hydrogels by rigid particle additives. Mechanics of Materials, 2019, 132, 57-65.	1.7	10
28	Reassessment of the Dynamic Thermomechanical Conversion in Metals. Physical Review Letters, 2019, 123, 255502.	2.9	23
29	Fractographic characterization of fatigued zirconia dental implants tested in room air and saline solution. Engineering Failure Analysis, 2019, 96, 298-310.	1.8	5
30	Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures. Materials Science and Engineering C, 2019, 96, 176-182.	3.8	44
31	Random spectrum fatigue performance of severely plastically deformed titanium for implant dentistry applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 83, 94-101.	1.5	5
32	The effects of waterjet peening on a random-topography metallic implant surface. European Journal of Mechanics, A/Solids, 2018, 71, 235-244.	2.1	17
33	On a dislocation-based constitutive model and dynamic thermomechanical considerations. International Journal of Plasticity, 2018, 108, 55-69.	4.1	30
34	Dynamic Tensile Response of Additively Manufactured Ti6Al4V With Embedded Spherical Pores. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	29
35	Dynamic tension of ductile polymers: Experimentation and modelling. Mechanics of Materials, 2018, 123, 30-42.	1.7	14
36	The influence of microstructure on the static and dynamic strength of transparent Magnesium Aluminate Spinel (MgAl2O4). Journal of the European Ceramic Society, 2018, 38, 3618-3634.	2.8	8

#	Article	IF	CITATIONS
37	Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders. Mechanics of Materials, 2018, 116, 130-145.	1.7	14
38	Application of the incubation time criterion for dynamic brittle fracture. International Journal of Impact Engineering, 2018, 112, 66-73.	2.4	10
39	Experimental investigation of fracture under controlled stress triaxiality using shear-compression disk specimen. International Journal of Fracture, 2018, 209, 171-185.	1.1	2
40	Preface: IUTAM Symposium on Dynamic Instabilities in Solids. Mechanics of Materials, 2018, 116, 1-2.	1.7	0
41	Investigating the strength of materials at very high strain rates using electro-magnetically driven expanding cylinders. Mechanics of Materials, 2018, 117, 165-180.	1.7	8
42	Impact-induced gelation in aqueous methylcellulose solutions. Chemical Communications, 2018, 54, 12578-12581.	2.2	10
43	Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 94-101.	2.6	28
44	Static and dynamic comprehensive response of additively manufactured discrete patterns of Ti6Al4V. International Journal of Impact Engineering, 2018, 122, 182-196.	2.4	11
45	Modeling the effect of osseointegration on dental implant pullout and torque removal tests. Clinical Implant Dentistry and Related Research, 2018, 20, 683-691.	1.6	24
46	Modeling dental implant insertion. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 42-50.	1.5	42
47	Modelling dental implant extraction by pullout and torque procedures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 416-427.	1.5	19
48	Static and Dynamic Large Strain Properties of Methyl Cellulose Hydrogels. Macromolecules, 2017, 50, 4817-4826.	2.2	14
49	On stress/strain shielding and the material stiffness paradigm for dental implants. Clinical Implant Dentistry and Related Research, 2017, 19, 935-943.	1.6	22
50	A two-dimensional model for metallic surface roughness resulting from pure waterjet peening. International Journal of Engineering Science, 2017, 120, 189-198.	2.7	20
51	Mechanical Characterization of Impact-Induced Dynamically Recrystallized Nanophase. Physical Review Applied, 2017, 7, .	1.5	19
52	Three-dimensional stochastic modeling of metallic surface roughness resulting from pure waterjet peening. International Journal of Engineering Science, 2017, 120, 241-253.	2.7	17
53	Quasi-Static and Dynamic Large Strain Shear-Tension Testing. Experimental Mechanics, 2017, 57, 1509-1514.	1.1	6
54	Dynamic large strain characterization of tantalum using shear-compression and shear-tension testing. Mechanics of Materials, 2017, 112, 143-153.	1.7	25

#	Article	IF	CITATIONS
55	Engineering Dental Implants. Current Oral Health Reports, 2017, 4, 239-247.	0.5	3
56	The Failure Envelope Concept Applied To The Bone-Dental Implant System. Scientific Reports, 2017, 7, 2051.	1.6	34
57	On the relation between shape imperfections of a specimen and necking growth rate under dynamic conditions. International Journal of Engineering Science, 2017, 119, 278-287.	2.7	3
58	The dependence of the Taylor–Quinney coefficient on the dynamic loading mode. Journal of the Mechanics and Physics of Solids, 2017, 107, 96-114.	2.3	179
59	Fatigue of Dental Implants: Facts and Fallacies. Dentistry Journal, 2016, 4, 16.	0.9	36
60	Random spectrum loading of dental implants: An alternative approach to functional performance assessment. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 1-9.	1.5	20
61	Polyurea coated aluminum plates under hydrodynamic loading: Does side matter?. International Journal of Impact Engineering, 2016, 98, 1-12.	2.4	24
62	The genesis of adiabatic shear bands. Scientific Reports, 2016, 6, 37226.	1.6	58
63	A Shear-Tension Specimen for Large Strain Testing. Experimental Mechanics, 2016, 56, 437-449.	1.1	30
64	Fatigue failure of dental implants in simulated intraoral media. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 636-644.	1.5	19
65	Necking evolution in dynamically stretched bars: New experimental and computational insights. Journal of the Mechanics and Physics of Solids, 2016, 91, 216-239.	2.3	18
66	Experiments and modeling of ballistic penetration using an energy failure criterion. EPJ Web of Conferences, 2015, 94, 04016.	0.1	2
67	Modification of the Shear-Compression Specimen for Large Strain Testing. Experimental Mechanics, 2015, 55, 1627-1639.	1.1	54
68	Why does necking ignore notches in dynamic tension?. EPJ Web of Conferences, 2015, 94, 01013.	0.1	1
69	On what controls the spacing of spontaneous adiabatic shear bands in collapsing thick-walled cylinders. EPJ Web of Conferences, 2015, 94, 04054.	0.1	2
70	Investigating strength of materials at very high strain rates using magnetically driven expanding cylinders. EPJ Web of Conferences, 2015, 94, 01068.	0.1	0
71	An Overview of the Mechanical Integrity of Dental Implants. BioMed Research International, 2015, 2015, 1-11.	0.9	52
72	Why does necking ignore notches in dynamic tension?. Journal of the Mechanics and Physics of Solids, 2015, 78, 173-185.	2.3	10

#	Article	IF	CITATIONS
73	On the mechanical integrity of retrieved dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 49, 290-299.	1.5	51
74	A Percolative Deformation Process Between Nanograins Promotes Dynamic Shear Localization. Materials Research Letters, 2015, 3, 76-81.	4.1	3
75	Analytical formulation of a criterion for adiabatic shear failure. International Journal of Impact Engineering, 2015, 85, 20-26.	2.4	14
76	Dynamic Mechanical Behavior of Additively Manufactured Ti6Al4V With Controlled Voids. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	58
77	Experiments and modeling of ballistic penetration using an energy failure criterion. Journal of the Mechanics and Physics of Solids, 2015, 83, 1-18.	2.3	20
78	An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders. Journal of the Mechanics and Physics of Solids, 2015, 79, 134-156.	2.3	23
79	Dynamic recrystallization and adiabatic shear localization. Mechanics of Materials, 2015, 81, 41-55.	1.7	25
80	A model coupling plasticity and phase transformation with application to dynamic shear deformation of iron. Mechanics of Materials, 2015, 80, 255-263.	1.7	10
81	An analysis of microstructural and thermal softening effects in dynamic necking. Mechanics of Materials, 2015, 80, 298-310.	1.7	15
82	Effect of confinement on thick polycarbonate plates impacted by long and AP projectiles. International Journal of Impact Engineering, 2015, 76, 38-48.	2.4	12
83	A New Methodology for Uniaxial Tensile Testing of Free-Standing Thin Films at High Strain-Rates. Experimental Mechanics, 2014, 54, 1687-1696.	1.1	14
84	<scp>E</scp> ffect of <scp>D</scp> ental <scp>I</scp> mplant <scp>D</scp> iameter on <scp>F</scp> atigue <scp>P</scp> erformance. <scp>P</scp> art <scp>II</scp> : <scp>F</scp> ailure <scp>A</scp> nalysis. Clinical Implant Dentistry and Related Research, 2014, 16, 178-184.	1.6	39
85	<scp>E</scp> ffect of <scp>D</scp> ental <scp>I</scp> mplant <scp>D</scp> iameter on <scp>F</scp> atigue <scp>P</scp> erformance. <scp>P</scp> art <scp>I</scp> : <scp>M</scp> echanical <scp>B</scp> ehavior. Clinical Implant Dentistry and Related Research, 2014, 16, 172-177.	1.6	44
86	Identification of failure mechanisms in retrieved fractured dental implants. Engineering Failure Analysis, 2014, 38, 58-65.	1.8	47
87	Static and dynamic mechanical properties of alumina reinforced with sub-micron Ni particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 1-9.	2.6	9
88	Impact of thick PMMA plates by long projectiles at low velocities. Part I: Effect of head's shape. Mechanics of Materials, 2014, 70, 41-52.	1.7	22
89	Scaling dynamic failure: A numerical study. International Journal of Impact Engineering, 2014, 69, 69-79.	2.4	26
90	On the Testing of the Dynamic Mechanical Properties of Soft Gelatins. Experimental Mechanics, 2014, 54, 805-815.	1.1	37

6

#	Article	IF	CITATIONS
91	The effect of oralâ€like environment on dental implants' fatigue performance. Clinical Oral Implants Research, 2014, 25, e166-70.	1.9	20
92	Mechanical assessment of grit blasting surface treatments of dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 375-390.	1.5	32
93	A large strain rate effect in thin free-standing Al films. Scripta Materialia, 2014, 90-91, 6-9.	2.6	4
94	Dynamic Necking of Notched Tensile Bars: An Experimental Study. Experimental Mechanics, 2014, 54, 1099-1109.	1.1	13
95	Is There An Optimal Gauge Length for Dynamic Tensile Specimens?. Experimental Mechanics, 2014, 54, 1205-1214.	1.1	18
96	Impact of thick PMMA plates by long projectiles at low velocities. Part II: Effect of confinement. Mechanics of Materials, 2014, 70, 53-66.	1.7	10
97	Dynamic testing of materials: Selected topics. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2014, , 59-86.	0.3	1
98	Dynamic tensile necking: Influence of specimen geometry and boundary conditions. Mechanics of Materials, 2013, 62, 1-13.	1.7	37
99	A Shear Compression Disk Specimen with Controlled Stress Triaxiality Under Dynamic Loading. Experimental Mechanics, 2013, 53, 243-253.	1.1	10
100	On the Taylor–Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel. International Journal of Plasticity, 2013, 40, 185-201.	4.1	80
101	Finite element analysis of AISI 304 steel sheets subjected to dynamic tension: The effects of martensitic transformation and plastic strain development on flow localization. International Journal of Impact Engineering, 2013, 54, 206-216.	2.4	18
102	The respective influence of microstructural and thermal softening on adiabatic shear localization. Mechanics of Materials, 2013, 56, 11-22.	1.7	68
103	Microstructural heterogeneity and dynamic shear localization. Applied Physics Letters, 2012, 101, .	1.5	9
104	Static and dynamic flexural strength of 99.5% alumina: Relation to surface roughness. Mechanics of Materials, 2012, 54, 91-99.	1.7	11
105	On the dynamic character of localized failure. Scripta Materialia, 2012, 67, 693-695.	2.6	19
106	Multi-Scale Stereo-Photogrammetry System for Fractographic Analysis Using Scanning Electron Microscopy. Experimental Mechanics, 2012, 52, 975-991.	1.1	21
107	On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper. Acta Materialia, 2012, 60, 3719-3728.	3.8	59
108	Microstructural effects on adiabatic shear band formation. Scripta Materialia, 2012, 66, 9-12.	2.6	98

#	Article	IF	CITATIONS
109	Static and dynamic flexural strength of 99.5% alumina: Relation to porosity. Mechanics of Materials, 2012, 48, 43-55.	1.7	21
110	Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization. International Journal of Impact Engineering, 2011, 38, 918-929.	2.4	40
111	A Simple Methodology to Measure the Dynamic Flexural Strength of Brittle Materials. Experimental Mechanics, 2011, 51, 1325-1334.	1.1	11
112	A Shear Compression Disk Specimen with Controlled Stress Triaxiality under Quasi-Static Loading. Experimental Mechanics, 2011, 51, 1545-1557.	1.1	20
113	Experimentation and modeling of inclined ballistic impact in thick polycarbonate plates. International Journal of Impact Engineering, 2011, 38, 804-814.	2.4	34
114	Microstructural Aspects of Adiabatic Shear Failure in Annealed Ti6Al4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 389-396.	1.1	24
115	Dynamic failure by adiabatic shear banding. International Journal of Fracture, 2010, 162, 177-185.	1.1	48
116	Static and dynamic fracture of transparent nanograined alumina. Journal of the Mechanics and Physics of Solids, 2010, 58, 484-501.	2.3	33
117	Modeling adiabatic shear failure from energy considerations. Journal of the Mechanics and Physics of Solids, 2010, 58, 1759-1775.	2.3	64
118	A study of inclined impact in polymethylmethacrylate plates. International Journal of Impact Engineering, 2010, 37, 285-294.	2.4	30
119	Effect of strain rate on the yielding mechanism of amorphous metal foam. Applied Physics Letters, 2010, 96, 021906.	1.5	6
120	Dynamic failure by adiabatic shear banding. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 177-185.	0.1	1
121	Springback of circular clamped armor steel plates subjected to spherical air-blast loading. International Journal of Impact Engineering, 2009, 36, 53-60.	2.4	50
122	Large Deformation of Nitinol Under Shear Dominant Loading. Experimental Mechanics, 2009, 49, 225-233.	1.1	24
123	Determination of the Johnson–Cook Material Parameters Using the SCS Specimen. Experimental Mechanics, 2009, 49, 881-885.	1.1	80
124	Thermomechanical behavior of single crystalline tantalum in the static and dynamic regime. Mechanics of Materials, 2009, 41, 1323-1329.	1.7	40
125	A different viewpoint on adiabatic shear localization. Journal Physics D: Applied Physics, 2009, 42, 214009.	1.3	46
126	INVESTIGATION OF ADIABATIC SHEAR BANDS IN THICK-WALLED CYLINDERS COLLAPSED BY ELECTRO-MAGNETIC DRIVING FORCES. , 2009, , .		0

#	Article	IF	CITATIONS
127	Dynamic Shear Failure of Materials. , 2009, , 29-61.		1
128	Static and dynamic mechanical properties of infiltrated B4C–Si composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 405-409.	2.6	62
129	A Note on the Direct Determination of the Confining Pressure of Cylindrical Specimens. Experimental Mechanics, 2008, 48, 375-377.	1.1	11
130	Simultaneous Transient Temperature Sensing of Impacted Polymers Using Infrared Detectors and Thermocouples. Experimental Mechanics, 2008, 48, 675-682.	1.1	30
131	Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys. Mechanics of Materials, 2008, 40, 629-635.	1.7	147
132	Health monitoring of joints using dynamic end effects. Journal of Sound and Vibration, 2008, 312, 257-272.	2.1	10
133	Dynamic flow and failure of confined polymethylmethacrylate. Journal of the Mechanics and Physics of Solids, 2008, 56, 1401-1416.	2.3	55
134	A methodology to assess the rate and pressure sensitivity of polymers over a wide range of strain rates. Journal of the Mechanics and Physics of Solids, 2008, 56, 3191-3205.	2.3	31
135	An analysis of nanoindentation in linearly elastic solids. International Journal of Solids and Structures, 2008, 45, 6018-6033.	1.3	144
136	An analysis of nanoindentation in elasto-plastic solids. International Journal of Solids and Structures, 2008, 45, 6399-6415.	1.3	44
137	Optimum location of a three strain gauge rosette for measuring mixed mode stress intensity factors. Engineering Fracture Mechanics, 2008, 75, 4127-4139.	2.0	13
138	Transverse impact of free–free square aluminum beams: An experimental–numerical investigation. International Journal of Impact Engineering, 2008, 35, 569-577.	2.4	21
139	Geometrical imperfection and adiabatic shear banding. International Journal of Impact Engineering, 2008, 35, 1280-1292.	2.4	40
140	Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure. Physical Review Letters, 2008, 101, 165501.	2.9	217
141	Thermo-Mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4V Alloys. , 2008, , .		0
142	Application of ac tomography to crack identification. Applied Physics Letters, 2007, 91, 084104.	1.5	13
143	Pressure sensitivity of adiabatic shear banding in metals. Applied Physics Letters, 2007, 90, 021915.	1.5	22
144	Strain rate dependency on deformation texture for pure polycrystalline tantalum. International Journal of Materials Research, 2007, 98, 889-893.	0.1	4

#	Article	IF	CITATIONS
145	Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading. International Journal of Impact Engineering, 2007, 34, 859-873.	2.4	180
146	Thermomechanical characterization of pure polycrystalline tantalum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 447, 65-70.	2.6	48
147	Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: Buried charges. International Journal of Impact Engineering, 2007, 34, 874-882.	2.4	113
148	3D Reconstruction and Visualization of Microstructure Surfaces from 2D Images. CIRP Annals - Manufacturing Technology, 2007, 56, 149-152.	1.7	42
149	Flaw detection in metals by the ACPD technique: Theory and experiments. NDT and E International, 2007, 40, 505-509.	1.7	23
150	Some experiments on adiabatic shear failure. European Physical Journal Special Topics, 2006, 134, 835-838.	0.2	4
151	The mechanical response of pure iron at high strain rates under dominant shear. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 432, 191-201.	2.6	95
152	A Numerical Study of the Applicability of the Shear Compression Specimen to Parabolic Hardening Materials. Experimental Mechanics, 2006, 46, 355-366.	1.1	18
153	Strain rate effect on the evolution of deformation texture for α-Fe. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1137-1145.	1.1	32
154	Adiabatic Shear Failure and Dynamic Stored Energy of Cold Work. Physical Review Letters, 2006, 96, 075502.	2.9	181
155	Alternating current flow in internally flawed conductors: A tomographic analysis. Applied Physics Letters, 2006, 89, 094102.	1.5	13
156	Dynamic Crack Initiation Toughness. , 2006, , 69-103.		1
157	Modern topics and challenges in dynamic fracture. Journal of the Mechanics and Physics of Solids, 2005, 53, 565-596.	2.3	111
158	Hysteretic thermal behavior of amorphous semi-aromatic polyamides. Polymer, 2005, 46, 11870-11875.	1.8	21
159	Dynamic fracture of berylium-bearing bulk metallic glass systems: A cross-technique comparison. Engineering Fracture Mechanics, 2005, 72, 1905-1919.	2.0	20
160	A hybrid experimental–numerical investigation of dynamic shear fracture. Engineering Fracture Mechanics, 2005, 72, 73-89.	2.0	13
161	Dynamic mechanical and fracture properties of an infiltrated TiC-1080 steel cermet. International Journal of Solids and Structures, 2005, 42, 697-715.	1.3	17
162	Adiabatic shear failure of a syntactic polymeric foam. Materials Letters, 2005, 59, 1845-1848.	1.3	24

#	Article	IF	CITATIONS
163	Effect of strain rate on deformation texture in OFHC copper. Scripta Materialia, 2005, 52, 657-661.	2.6	61
164	Numerical validation of the shear compression specimen. Part I: Quasi-static large strain testing. Experimental Mechanics, 2005, 45, 167-177.	1.1	50
165	Numerical validation of the shear compression specimen. Part II: Dynamic large strain testing. Experimental Mechanics, 2005, 45, 178-185.	1.1	39
166	Bridging thin and thick skin solutions for alternating currents in cracked conductors. Applied Physics Letters, 2005, 87, 084103.	1.5	21
167	Numerical validation of the shear compression specimen. Part II: Dynamic large strain testing. , 2005, 45, 178.		2
168	Numerical validation of the shear compression specimen. Part I: Quasi-static large strain testing. , 2005, 45, 167.		3
169	Static and dynamic mechanical damage mechanisms in TiC-1080 steel cermets. Scripta Materialia, 2004, 51, 37-41.	2.6	28
170	On the isotropy of the dynamic mechanical and failure properties of swaged tungsten heavy alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3787-3795.	1.1	24
171	Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2873-2885.	1.1	103
172	Hysteretic heating of modified poly(methylmethacrylate). Polymer, 2003, 44, 2817-2822.	1.8	22
173	AN EDUCATIONAL VISUALIZATION TECHNIQUE FOR KOLSKY (SPLIT HOPKINSON) BAR. Experimental Techniques, 2003, 27, 35-39.	0.9	3
174	Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods. Journal of the Mechanics and Physics of Solids, 2003, 51, 1413-1431.	2.3	84
175	Failure modes of electrospun nanofibers. Applied Physics Letters, 2003, 82, 3958-3960.	1.5	100
176	Fragmentation of a porous viscoelastic material: Implications to magma fragmentation. Journal of Geophysical Research, 2002, 107, ECV 8-1-ECV 8-14.	3.3	48
177	On testing of charpy specimens using the one-point bend impact technique. Experimental Mechanics, 2002, 42, 247-252.	1.1	24
178	A shear-compression specimen for large strain testing. Experimental Mechanics, 2002, 42, 58-64.	1.1	178
179	Experimental crack identification using electrical impedance tomography. NDT and E International, 2002, 35, 301-316.	1.7	10
180	Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen. Mechanics of Materials, 2002, 34, 627-642.	1.7	73

#	Article	IF	CITATIONS
181	Impact fracture of a ferritic steel in the lower shelf regime. International Journal of Fracture, 2002, 117, 101-112.	1.1	14
182	A shear-compression specimen for large strain testing. , 2002, 42, 58.		1
183	On crack-tip cooling during dynamic crack initiation. International Journal of Solids and Structures, 2001, 38, 2517-2532.	1.3	14
184	Dynamic fracture of tungsten base heavy alloys. International Journal of Fracture, 2001, 112, 87-98.	1.1	30
185	Experiments in Dynamic Fracture. , 2001, , 343-352.		0
186	Thermomechanical couplings and fracture of amorphous polymers. European Structural Integrity Society, 2000, , 375-382.	0.1	1
187	Experimental investigation of transient thermoplastic effects in dynamic fracture. International Journal of Solids and Structures, 2000, 37, 2901-2913.	1.3	34
188	An investigation of the heat generated during cyclic loading of two glassy polymers. Part I: Experimental. Mechanics of Materials, 2000, 32, 131-147.	1.7	91
189	An investigation of the heat generated during cyclic loading of two glassy polymers. Part II: Thermal analysis. Mechanics of Materials, 2000, 32, 149-159.	1.7	67
190	A method for dynamic fracture toughness determination using short beams. International Journal of Fracture, 2000, 104, 89-103.	1.1	75
191	A Note on the Dynamic Failure of PMMA. International Journal of Fracture, 2000, 106, 3-8.	1.1	7
192	Infrared temperature sensing of mechanically loaded specimens: Thermal analysis. Experimental Mechanics, 2000, 40, 197-202.	1.1	20
193	On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mechanics of Materials, 1999, 31, 131-139.	1.7	296
194	On damage distribution in the upsetting process of sintered porous materials. International Journal of Fracture, 1999, 97, 321-336.	1.1	4
195	Thermomechanical aspects of dynamic crack initiation. International Journal of Fracture, 1999, 99, 201-212.	1.1	14
196	A model for the time response of solid-embedded thermocouples. Experimental Mechanics, 1999, 39, 132-136.	1.1	44
197	Impact Fracture of Screws for Disassembly. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1999, 121, 118-126.	1.3	6
198	Experimental investigation of transient thermoelastic effects in dynamic fracture. International Journal of Solids and Structures, 1998, 35, 2959-2973.	1.3	57

#	Article	IF	CITATIONS
199	Transient temperature measurement using embedded thermocouples. Experimental Mechanics, 1998, 38, 73-78.	1.1	56
200	Mode-mixity and dynamic failure mode transitions in polycarbonate. Mechanics of Materials, 1998, 30, 197-216.	1.7	30
201	The influence of temperature on dynamic failure mode transitions. Mechanics of Materials, 1998, 30, 217-227.	1.7	18
202	The Influence of Mode-Mixity on Dynamic Failure Mode Transitions in Polycarbonate. European Physical Journal Special Topics, 1997, 07, C3-861-C3-866.	0.2	2
203	On dynamic crack initiation in polycarbonate under mixed-mode loading. Mechanics Research Communications, 1997, 24, 57-64.	1.0	18
204	A study of mixed-mode dynamic crack initiation in PMMA. Mechanics Research Communications, 1996, 23, 475-481.	1.0	24
205	An investigation of dynamic crack initiation in PMMA. Mechanics of Materials, 1996, 23, 229-239.	1.7	107
206	About a new experimental method of identification of the dynamic toughness of materials. , 1996, , 41-48.		0
207	Dynamic fracture detection using the force-displacement reciprocity: application to the compact compression specimen. International Journal of Fracture, 1995, 73, 67-79.	1.1	35
208	Mixed-mode quantification for dynamic fracture initiation: Application to the compact compression specimen. International Journal of Solids and Structures, 1993, 30, 3233-3244.	1.3	37
209	A new method for dynamic fracture toughness testing. Scripta Metallurgica Et Materialia, 1992, 26, 1593-1598.	1.0	39
210	A new approach to the experimental determination of the dynamic stress intensity factor. International Journal of Solids and Structures, 1992, 29, 2881-2895.	1.3	44
211	Experimental investigation of surface instabilities in cylindrical tensile metallic specimens. Acta Metallurgica Et Materialia, 1991, 39, 719-724.	1.9	10
212	The influence of microstructure on the macroscopic patterns of surface instabilities in metals. Scripta Metallurgica Et Materialia, 1990, 24, 1759-1764.	1.0	8
213	Tensile deformation of coarse-grained cast austenitic manganese steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 110, 77-87.	2.6	16
214	Cyclic properties of coarse-grained cast austenitic manganese steels. International Journal of Fatigue, 1989, 11, 177-182.	2.8	8
215	Tensile fracture of coarse-Grained cast austenitic manganese steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 2269-2277.	1.4	23
216	On the Application of Metallurgical Techniques to Forensic Sciences. Journal of Forensic Sciences, 1988, 33, 210-216.	0.9	0

#	Article	IF	CITATIONS
217	Plastic dilatancy as a parameter for ductile fracture criterion. International Journal of Fracture, 1987, 35, R61-R64.	1.1	1
218	A Finite Element Modelling of Embrittlement in Composite Liquid Phase Sintered Heavy Alloys. Journal of Engineering Materials and Technology, Transactions of the ASME, 1986, 108, 159-162.	0.8	2
219	Ductility and precipitation in sintered tungsten alloys. Materials Science and Engineering, 1986, 82, 93-99.	0.1	5
220	MethylCellulose Solutions as Shock Absorbers. Key Engineering Materials, 0, 842, 22-27.	0.4	0
221	Off-Center High Velocity Impact on Cylindrical Pipes and Shells. Journal of Dynamic Behavior of Materials, 0, , 1.	1.1	1
222	Hypervelocity Impacts on Hollow Cylindrical Targets. Journal of Dynamic Behavior of Materials, 0, , .	1.1	0