Tobias Heil

List of Publications by Citations

Source: https://exaly.com/author-pdf/9316264/tobias-heil-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 64 2,849 53 g-index h-index papers citations 66 3,611 5.69 11 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
64	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13445-13449	16.4	379
63	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3433-3437	16.4	197
62	Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. <i>Small Methods</i> , 2018 , 2, 1800202	12.8	169
61	Designing Defective Crystalline Carbon Nitride to Enable Selective CO2 Photoreduction in the Gas Phase. <i>Advanced Functional Materials</i> , 2019 , 29, 1900093	15.6	151
60	Experimental evidence of self-limited growth of nanocrystals in glass. <i>Nano Letters</i> , 2009 , 9, 2493-6	11.5	137
59	Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. <i>Joule</i> , 2019 , 3, 2792-2805	27.8	115
58	Enhanced Electrocatalytic N Reduction via Partial Anion Substitution in Titanium Oxide-Carbon Composites. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13101-13106	16.4	112
57	Artificial light-driven ion pump for photoelectric energy conversion. <i>Nature Communications</i> , 2019 , 10, 74	17.4	94
56	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie</i> , 2017 , 129, 13630-1363	43.6	91
55	Greener synthesis of dimethyl carbonate using a novel ceriallirconia oxide/graphene nanocomposite catalyst. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 353-362	21.8	89
54	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14950-14954	16.4	74
53	A Single Cu-Center Containing Enzyme-Mimic Enabling Full Photosynthesis under CO Reduction. <i>ACS Nano</i> , 2020 , 14, 8584-8593	16.7	73
52	Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 19038-46	9.5	68
51	Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance. <i>ACS Nano</i> , 2016 , 10, 4695-703	16.7	67
50	Semi-heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9575-9580	16.4	66
49	Template- and Metal-Free Synthesis of Nitrogen-Rich Nanoporous "Noble" Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10765-10770	16.4	60
48	Photo-Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12574-12579	16.4	53

(2018-2017)

47	Hexaazatriphenylene doped carbon nitrides B iomimetic photocatalyst with superior oxidation power. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 622-628	21.8	52
46	Morphogenesis of Metal-Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers. Journal of the American Chemical Society, 2018 , 140, 2947-2956	16.4	52
45	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 3471-3475	3.6	44
44	Electrostatic Stabilization of Carbon Nitride Colloids in Organic Solvents Enables Stable Dispersions and Transparent Homogeneous CN Films for Optoelectronics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17532-17537	16.4	42
43	Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor. <i>Advanced Materials</i> , 2020 , 32, e1908140	24	36
42	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Double-Layer Capacitors. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700128	5.9	36
41	Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. <i>RSC Advances</i> , 2017 , 7, 14716-14720	3.7	34
40	Partially delocalized charge in Fe-doped NiCo2S4 nanosheetthesoporous carbon-composites for high-voltage supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19342-19347	13	34
39	Visible-light induced emulsion photopolymerization with carbon nitride as a stabilizer and photoinitiator. <i>Polymer Chemistry</i> , 2019 , 10, 5315-5323	4.9	33
38	Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 451-462	21.8	31
37	Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3270-32	279	30
36	Greener synthesis of propylene carbonate using graphene-inorganic nanocomposite catalysts. <i>Catalysis Today</i> , 2015 , 256, 347-357	5.3	27
35	Boron Carbon Nitride Thin Films: From Disordered to Ordered Conjugated Ternary Materials. Journal of the American Chemical Society, 2020 , 142, 20883-20891	16.4	26
34	Nickel on nitrogen-doped carbon pellets for continuous-flow hydrogenation of biomass-derived compounds in water. <i>Green Chemistry</i> , 2020 , 22, 2755-2766	10	25
33	Selective Calixarene-Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres, and Scrolls. <i>Chemistry - A European Journal</i> , 2017 , 23, 8128-8133	4.8	24
32	Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors. <i>Energy Storage Materials</i> , 2019 , 20, 188-195	19.4	20
31	Additives Control the Stability of Amorphous Calcium Carbonate via Two Different Mechanisms: Surface Adsorption versus Bulk Incorporation. <i>Advanced Functional Materials</i> , 2020 , 30, 2000003	15.6	19
30	C2NxO1☑ framework carbons with defined microporosity and Co-doped functional pores. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19013-19019	13	18

29	Fuzzy tungsten in a magnetron sputtering device. Journal of Nuclear Materials, 2016, 480, 374-385	3.3	17
28	Continuous hydrothermal flow synthesis of graphene quantum dots. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 949-958	4.9	17
27	Dispersed nano-MOFs via a stimuli-responsive biohybrid-system with enhanced photocatalytic performance. <i>Materials Horizons</i> , 2019 , 6, 802-809	14.4	15
26	Quantitative comparison of energy-filtering transmission electron microscopy and atom probe tomography. <i>Ultramicroscopy</i> , 2009 , 109, 612-8	3.1	15
25	Synthesis of carbon frameworks with N, O and S-lined pores from gallic acid and thiourea for superior CO2 adsorption and supercapacitors. <i>Science China Materials</i> , 2020 , 63, 748-757	7.1	14
24	Optimization of EFTEM image acquisition by using elastically filtered images for drift correction. <i>Ultramicroscopy</i> , 2010 , 110, 748-53	3.1	14
23	Laser-Induced Carbonization of Natural Organic Precursors for Flexible Electronics. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000463	6.4	14
22	Enhanced Electrocatalytic N2 Reduction via Partial Anion Substitution in Titanium Oxide C arbon Composites. <i>Angewandte Chemie</i> , 2019 , 131, 13235-13240	3.6	13
21	Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. <i>ACS Nano</i> , 2021 , 15, 6551-6561	16.7	13
20	Patching laser-reduced graphene oxide with carbon nanodots. <i>Nanoscale</i> , 2019 , 11, 12712-12719	7.7	12
19	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie</i> , 2019 , 131, 15092-15096	3.6	12
18	Semi-heterogene duale Nickel-/Photokatalyse mit Kohlenstoffnitriden: Veresterung von Carbons Iren mit Arylhalogeniden. <i>Angewandte Chemie</i> , 2019 , 131, 9676-9681	3.6	11
17	In Situ Formation of Arrays of Tungsten Single Atoms within Carbon Nitride Frameworks Fabricated by One-Step Synthesis through Monomer Complexation. <i>Chemistry of Materials</i> , 2020 , 32, 9435-9443	9.6	9
16	Guanine-Derived Porous Carbonaceous Materials: Towards C N. <i>ChemSusChem</i> , 2020 , 13, 6643-6650	8.3	9
15	All-organic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119773	21.8	9
14	Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon nanotube supports for the Fischer-Tropsch to olefins synthesis. <i>Applied Catalysis A: General</i> , 2018 , 568, 213-220	5.1	9
13	Sustainable Cathodes for Lithium-Ion Energy Storage Devices Based on Tannic Acidlloward Ecofriendly Energy Storage. <i>Advanced Sustainable Systems</i> , 2021 , 5, 2000206	5.9	8
12	Synthesis of a Porous CN-Derived Framework with High Yield by Gallic Acid Cross-Linking Using Salt Melts. <i>ACS Applied Materials & Description</i> (12, 13127-13133)	9.5	7

LIST OF PUBLICATIONS

11	Templat- und metallfreie Synthese stickstoffreicher, nanoporßer und ßdler D Kohlenstoffmaterialien durch direkte Kondensation eines vororganisierten Hexaazatriphenylen Vorl Üfers. <i>Angewandte Chemie</i> , 2018 , 130, 10926-10931	3.6	7
10	Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped)carbons. <i>Carbon</i> , 2021 , 176, 500-510	10.4	7
9	Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films. <i>Advanced Science</i> , 2021 , 8, e2101602	13.6	7
8	Light-driven directional ion transport for enhanced osmotic energy harvesting. <i>National Science Review</i> , 2021 , 8, nwaa231	10.8	6
7	Photo-Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. <i>Angewandte Chemie</i> , 2019 , 131, 12704-12709	3.6	5
6	Improving the reliability of the background extrapolation in transmission electron microscopy elemental maps by using three pre-edge windows. <i>Ultramicroscopy</i> , 2012 , 118, 11-6	3.1	5
5	Laser-driven growth of structurally defined transition metal oxide nanocrystals on carbon nitride photoelectrodes in milliseconds. <i>Nature Communications</i> , 2021 , 12, 3224	17.4	5
4	Formation and Properties of Poly(Ionic Liquid)-Carbene Nanogels Containing Individually Stabilized Silver Species. <i>Chemistry - A European Journal</i> , 2018 , 24, 5754-5759	4.8	3
3	H2 and CH4 production from bio-alcohols using condensed poly(heptazine imide) with visible light. <i>Journal of Materials Chemistry A</i> ,	13	2
2	Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid. <i>Journal of Colloid and Interface Science</i> , 2021 , 602, 880-888	9.3	2
1	Noise reduction in CCD measurements by improving the quality of dark-reference images. <i>Microscopy (Oxford, England)</i> , 2018 , 67, i123-i132	1.3	1