Ramunas Stepanauskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nature Communications, 2022, 13, 117.	5.8	17
2	Phosphonate production by marine microbes: Exploring new sources and potential function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113386119.	3.3	31
3	Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME Journal, 2022, 16, 1337-1347.	4.4	15
4	Single cell genome sequencing of laboratory mouse microbiota improves taxonomic and functional resolution of this model microbial community. PLoS ONE, 2022, 17, e0261795.	1.1	3
5	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
6	Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME Journal, 2021, 15, 1121-1135.	4.4	37
7	The cyanobacterium <i>Prochlorococcus</i> has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
8	Evolutionary stasis of a deep subsurface microbial lineage. ISME Journal, 2021, 15, 2830-2842.	4.4	23
9	Synthase-Selective Exploration of a Tunicate Microbiome by Activity-Guided Single-Cell Genomics. ACS Chemical Biology, 2021, 16, 813-819.	1.6	4
10	Genomic Analysis of the Yet-Uncultured Binatota Reveals Broad Methylotrophic, Alkane-Degradation, and Pigment Production Capacities. MBio, 2021, 12, .	1.8	13
11	Microbial Diversity and Function in Shallow Subsurface Sediment and Oceanic Lithosphere of the Atlantis Massif. MBio, 2021, 12, e0049021.	1.8	13
12	Genomic Variation Influences Methanothermococcus Fitness in Marine Hydrothermal Systems. Frontiers in Microbiology, 2021, 12, 714920.	1.5	3
13	Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume. Frontiers in Microbiology, 2021, 12, 738231.	1.5	1
14	Pangenomics Analysis Reveals Diversification of Enzyme Families and Niche Specialization in Globally Abundant SAR202 Bacteria. MBio, 2020, 11, .	1.8	39
15	Single Cell Genomics Reveals Viruses Consumed by Marine Protists. Frontiers in Microbiology, 2020, 11, 524828.	1.5	26
16	Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME Journal, 2020, 14, 2527-2541.	4.4	42
17	Ancestral Absence of Electron Transport Chains in Patescibacteria and DPANN. Frontiers in Microbiology, 2020, 11, 1848.	1.5	62
18	Hiding in Plain Sight: The Globally Distributed Bacterial Candidate Phylum PAUC34f. Frontiers in Microbiology, 2020, 11, 376.	1.5	5

#	Article	IF	CITATIONS
19	Single Cell Genomics-Based Analysis of Gene Content and Expression of Prophages in a Diffuse-Flow Deep-Sea Hydrothermal System. Frontiers in Microbiology, 2019, 10, 1262.	1.5	14
20	Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nature Communications, 2019, 10, 463.	5.8	87
21	Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Scientific Reports, 2019, 9, 6025.	1.6	35
22	Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME Journal, 2019, 13, 2150-2161.	4.4	108
23	Genomic Characterization of Candidate Division LCP-89 Reveals an Atypical Cell Wall Structure, Microcompartment Production, and Dual Respiratory and Fermentative Capacities. Applied and Environmental Microbiology, 2019, 85, .	1.4	14
24	Four Draft Single-Cell Genome Sequences of Novel, Nearly Identical <i>Kiritimatiellaeota</i> Strains Isolated from the Continental Deep Subsurface. Microbiology Resource Announcements, 2019, 8, .	0.3	23
25	Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME Journal, 2019, 13, 1457-1468.	4.4	31
26	Genomics insights into ecotype formation of ammoniaâ€oxidizing archaea in the deep ocean. Environmental Microbiology, 2019, 21, 716-729.	1.8	39
27	Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell, 2019, 179, 1623-1635.e11.	13.5	158
28	Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. ELife, 2019, 8, .	2.8	57
29	A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments. ISME Journal, 2018, 12, 1706-1714.	4.4	94
30	Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications, 2018, 9, 310.	5.8	101
31	Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E400-E408.	3.3	146
32	Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME Journal, 2018, 12, 742-755.	4.4	76
33	Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome, 2018, 6, 161.	4.9	44
34	Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Scientific Data, 2018, 5, 180154.	2.4	81
35	SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter. MBio, 2017, 8, .	1.8	168
36	Genomic exploration of individual giant ocean viruses. ISME Journal, 2017, 11, 1736-1745.	4.4	40

#	Article	IF	CITATIONS
37	Fundamental differences in diversity and genomic population structure between Atlantic and Pacific <i>Prochlorococcus</i> . ISME Journal, 2017, 11, 1997-2011.	4.4	56
38	Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. ISME Journal, 2017, 11, 2334-2344.	4.4	34
39	Excess of non-conservative amino acid changes in marine bacterioplankton lineages with reduced genomes. Nature Microbiology, 2017, 2, 17091.	5.9	41
40	Strategies to improve reference databases for soil microbiomes. ISME Journal, 2017, 11, 829-834.	4.4	106
41	Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nature Communications, 2017, 8, 84.	5.8	169
42	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	2.4	147
43	Minimum information about a single amplified genome (MISAC) and a metagenome-assembled genome (MIMAC) of bacteria and archaea. Nature Biotechnology, 2017, 35, 725-731.	9.4	1,512
44	Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 2017, 358, 1046-1051.	6.0	229
45	Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nature Communications, 2017, 8, 1507.	5.8	99
46	Exploring Microdiversity in Novel Kordia sp. (Bacteroidetes) with Proteorhodopsin from the Tropical Indian Ocean via Single Amplified Genomes. Frontiers in Microbiology, 2017, 8, 1317.	1.5	7
47	Genomic Comparison of Two Family-Level Groups of the Uncultivated NAG1 Archaeal Lineage from Chemically and Geographically Disparate Hot Springs. Frontiers in Microbiology, 2017, 8, 2082.	1.5	19
48	Rokubacteria: Genomic Giants among the Uncultured Bacterial Phyla. Frontiers in Microbiology, 2017, 8, 2264.	1.5	142
49	Characterization of Two Cryptic Plasmids Isolated in Haiti from Clinical Vibrio cholerae Non-O1/Non-O139. Frontiers in Microbiology, 2017, 8, 2283.	1.5	11
50	Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ, 2017, 5, e3134.	0.9	50
51	Single-Cell Genome and Group-Specific <i>dsrAB</i> Sequencing Implicate Marine Members of the Class <i>Dehalococcoidia</i> (Phylum <i>Chloroflexi</i>) in Sulfur Cycling. MBio, 2016, 7, .	1.8	78
52	Diversification and niche adaptations of <i>Nitrospina</i> -like bacteria in the polyextreme interfaces of Red Sea brines. ISME Journal, 2016, 10, 1383-1399.	4.4	85
53	Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME Journal, 2016, 10, 1902-1914.	4.4	66
54	Ecological Genomics of the Uncultivated Marine Roseobacter Lineage CHAB-I-5. Applied and Environmental Microbiology, 2016, 82, 2100-2111.	1.4	50

#	Article	IF	CITATIONS
55	Ubiquitous <i>Gammaproteobacteria</i> dominate dark carbon fixation in coastal sediments. ISME Journal, 2016, 10, 1939-1953.	4.4	223
56	Wiretapping into microbial interactions by single cell genomics. Frontiers in Microbiology, 2015, 6, 258.	1.5	23
57	Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Frontiers in Microbiology, 2015, 6, 349.	1.5	61
58	Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME Journal, 2015, 9, 2386-2399.	4.4	207
59	Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. ISME Journal, 2015, 9, 2373-2385.	4.4	51
60	Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs. Applied and Environmental Microbiology, 2015, 81, 7860-7868.	1.4	63
61	Reâ€defining microbial diversity from its singleâ€celled building blocks. Environmental Microbiology Reports, 2015, 7, 36-37.	1.0	1
62	Genomic insights into the uncultivated marine <i>Zetaproteobacteria</i> at Loihi Seamount. ISME Journal, 2015, 9, 857-870.	4.4	69
63	Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum â€ ⁻ Diapherotrites'. ISME Journal, 2015, 9, 447-460.	4.4	89
64	De novo synthesis and functional analysis of the phosphatase-encoding gene acl-B of uncultured Actinobacteria from Lake Stechlin (NE Germany). International Microbiology, 2015, 18, 39-47.	1.1	2
65	Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics. PLoS Genetics, 2014, 10, e1004596.	1.5	131
66	Comparative single-cell genomics reveals potential ecological niches for the freshwater acl Actinobacteria lineage. ISME Journal, 2014, 8, 2503-2516.	4.4	137
67	Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics. Environmental Microbiology, 2014, 16, 2682-2698.	1.8	80
68	Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer. Microbiology (United Kingdom), 2014, 160, 362-372.	0.7	10
69	Genome sequencing of a single cell of the widely distributed marine subsurface <i>Dehalococcoidia,</i> phylum <i>Chloroflexi</i> . ISME Journal, 2014, 8, 383-397.	4.4	172
70	Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild <i>Prochlorococcus</i> . Science, 2014, 344, 416-420.	6.0	506
71	Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nature Protocols, 2014, 9, 1038-1048.	5.5	243
72	Comparing effective population sizes of dominant marine alphaproteobacteria lineages. Environmental Microbiology Reports, 2014, 6, 167-172.	1.0	27

#	Article	IF	CITATIONS
73	Report of the workshop for life detection in samples from Mars. Life Sciences in Space Research, 2014, 2, 1-5.	1.2	24
74	Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME Journal, 2014, 8, 1440-1451.	4.4	119
75	Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. ISME Journal, 2014, 8, 1428-1439.	4.4	55
76	Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME Journal, 2014, 8, 732-736.	4.4	98
77	Genomic and Metabolic Diversity of Marine Group I Thaumarchaeota in the Mesopelagic of Two Subtropical Gyres. PLoS ONE, 2014, 9, e95380.	1.1	95
78	Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. ELife, 2014, 3, e03125.	2.8	186
79	Insights into the phylogeny and coding potential of microbial dark matter. Nature, 2013, 499, 431-437.	13.7	2,239
80	Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME Journal, 2013, 7, 137-147.	4.4	94
81	Predominant archaea in marine sediments degrade detrital proteins. Nature, 2013, 496, 215-218.	13.7	526
82	Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. Lecture Notes in Computer Science, 2013, , 158-170.	1.0	439
83	Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products. Journal of Computational Biology, 2013, 20, 714-737.	0.8	1,235
84	Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biology, 2013, 14, R130.	13.9	74
85	Cell sorting analysis of geographically separated hypersaline environments. Extremophiles, 2013, 17, 265-275.	0.9	46
86	Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11463-11468.	3.3	328
87	Prokaryotic Super Program Advisory Committee DOE Joint Genome Institute, Walnut Creek, CA, March 27, 2013. Standards in Genomic Sciences, 2013, 8, 561-570.	1.5	5
88	Unveiling <i>in situ</i> interactions between marine protists and bacteria through single cell sequencing. ISME Journal, 2012, 6, 703-707.	4.4	124
89	High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME Journal, 2012, 6, 113-123.	4.4	168
90	Single cell genomics: an individual look at microbes. Current Opinion in Microbiology, 2012, 15, 613-620.	2.3	212

#	Article	IF	CITATIONS
91	Capturing Single Cell Genomes of Active Polysaccharide Degraders: An Unexpected Contribution of Verrucomicrobia. PLoS ONE, 2012, 7, e35314.	1.1	236
92	New Abundant Microbial Groups in Aquatic Hypersaline Environments. Scientific Reports, 2011, 1, 135.	1.6	288
93	Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean. Science, 2011, 333, 1296-1300.	6.0	510
94	Single-Cell Genomics Reveals Organismal Interactions in Uncultivated Marine Protists. Science, 2011, 332, 714-717.	6.0	283
95	Capturing diversity of marine heterotrophic protists: one cell at a time. ISME Journal, 2011, 5, 674-684.	4.4	86
96	What's New Is Old: Resolving the Identity of Leptothrix ochracea Using Single Cell Genomics, Pyrosequencing and FISH. PLoS ONE, 2011, 6, e17769.	1.1	85
97	Targeted Sorting of Single Virus-Infected Cells of the Coccolithophore Emiliania huxleyi. PLoS ONE, 2011, 6, e22520.	1.1	23
98	Decontamination of MDA Reagents for Single Cell Whole Genome Amplification. PLoS ONE, 2011, 6, e26161.	1.1	163
99	Biomass of pelagic fungi in Baltic rivers. Hydrobiologia, 2009, 623, 105-112.	1.0	13
100	Multi-site Analysis Reveals Widespread Antibiotic Resistance in the Marine Pathogen Vibrio vulnificus. Microbial Ecology, 2009, 57, 151-159.	1.4	100
101	Assembling the Marine Metagenome, One Cell at a Time. PLoS ONE, 2009, 4, e5299.	1.1	320
102	Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. ISME Journal, 2008, 2, 417-428.	4.4	191
103	Widespread occurrence and genetic diversity of marine parasitoids belonging to <i>Syndiniales</i> (<i>Alveolata</i>). Environmental Microbiology, 2008, 10, 3349-3365.	1.8	511
104	Genomic sequencing of single microbial cells from environmental samples. Current Opinion in Microbiology, 2008, 11, 198-204.	2.3	130
105	Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento–San Joaquin River Delta: A geochemical approach. Organic Geochemistry, 2008, 39, 1302-1318.	0.9	59
106	Insights into the Environmental Resistance Gene Pool from the Genome Sequence of the Multidrug-Resistant Environmental Isolate <i>Escherichia coli</i> SMS-3-5. Journal of Bacteriology, 2008, 190, 6779-6794.	1.0	82
107	Antibiotic Resistance in the Shellfish Pathogen Vibrio parahaemolyticus Isolated from the Coastal Water and Sediment of Georgia and South Carolina, USA. Journal of Food Protection, 2008, 71, 2552-2558.	0.8	80
108	Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9052-9057.	3.3	278

#	Article	IF	CITATIONS
109	Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta. Geochimica Et Cosmochimica Acta, 2007, 71, 5968-5984.	1.6	59
110	Analysis of Environmental 18S Ribosomal RNA Sequences reveals Unknown Diversity of the Cosmopolitan Phylum Telonemia. Protist, 2007, 158, 173-180.	0.6	34
111	Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1833-1842.	1.2	84
112	Co-selection of antibiotic and metal resistance. Trends in Microbiology, 2006, 14, 176-182.	3.5	1,462
113	Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 2006, 8, 1510-1514.	1.8	258
114	Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiology Ecology, 2006, 58, 293-302.	1.3	127
115	Diversity and Distribution of Marine Microbial Eukaryotes in the Arctic Ocean and Adjacent Seas. Applied and Environmental Microbiology, 2006, 72, 3085-3095.	1.4	258
116	Sources, bioavailability, and photoreactivity of dissolved organic carbon in the Sacramento–San Joaquin River Delta. Biogeochemistry, 2005, 74, 131-149.	1.7	40
117	Flow-Cytometric Cell Sorting and Subsequent Molecular Analyses for Culture-Independent Identification of Bacterioplankton Involved in Dimethylsulfoniopropionate Transformations. Applied and Environmental Microbiology, 2005, 71, 1405-1416.	1.4	33
118	Elevated Microbial Tolerance to Metals and Antibiotics in Metal-Contaminated Industrial Environments. Environmental Science & amp; Technology, 2005, 39, 3671-3678.	4.6	162
119	1291 in Swedish rivers: distribution and sources. Science of the Total Environment, 2003, 309, 161-172.	3.9	25
120	Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiology Ecology, 2003, 46, 269-280.	1.3	64
121	SUMMER INPUTS OF RIVERINE NUTRIENTS TO THE BALTIC SEA: BIOAVAILABILITY AND EUTROPHICATION RELEVANCE. Ecological Monographs, 2002, 72, 579-597.	2.4	168
122	Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and Sequencing. Applied and Environmental Microbiology, 2001, 67, 2932-2941.	1.4	470
123	High DON bioavailability in boreal streams during a spring flood. Limnology and Oceanography, 2000, 45, 1298-1307.	1.6	131
124	A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces. Applied and Environmental Microbiology, 2000, 66, 1777-1787.	1.4	311
125	Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom. Applied and Environmental Microbiology, 2000, 66, 4237-4246.	1.4	402
126	Bioavailability of wetlandâ€derived DON to freshwater and marine bacterioplankton. Limnology and Oceanography, 1999, 44, 1477-1485.	1.6	126

#	Article	IF	CITATIONS
127	Differential Dissolved Organic Nitrogen Availability and Bacterial Aminopeptidase Activity in Limnic and Marine Waters. Microbial Ecology, 1999, 38, 264-272.	1.4	75
128	Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Applied and Environmental Microbiology, 1997, 63, 50-56.	1.4	563
129	Novel Integrative Elements and Genomic Plasticity in Ocean Ecosystems. SSRN Electronic Journal, 0, , .	0.4	2
130	Lifting the Lid: Nitrifying Archaea Sustain Diverse Microbial Communities Below the Ross Ice Shelf. SSRN Electronic Journal, 0, , .	0.4	3