Meagan S Mauter

List of Publications by Citations

Source: https://exaly.com/author-pdf/931552/meagan-s-mauter-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 3,875 24 73 h-index g-index citations papers 81 6.08 9.8 4,454 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
73	Environmental applications of carbon-based nanomaterials. <i>Environmental Science & Environmental Scien</i>	10.3	1154
72	Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. <i>Environmental Science & Environmental Sci</i>	10.3	317
71	Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. <i>Environmental Science & Environmental Sci</i>	10.3	289
70	The role of nanotechnology in tackling global water challenges. <i>Nature Sustainability</i> , 2018 , 1, 166-175	22.1	241
69	Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 3, 2861-8	9.5	226
68	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. <i>Environmental Science: Nano</i> , 2017 , 4, 767-781	7.1	148
67	Risks and risk governance in unconventional shale gas development. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 8289-97	10.3	132
66	New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. <i>Environmental Science & Environmental Science </i>	10.3	132
65	Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	96
64	Regional variation in water-related impacts of shale gas development and implications for emerging international plays. <i>Environmental Science & Environmental & Envir</i>	10.3	93
63	Osmotically assisted reverse osmosis for high salinity brine treatment. <i>Desalination</i> , 2017 , 421, 3-11	10.3	84
62	Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. <i>ACS Nano</i> , 2010 , 4, 6651-8	16.7	80
61	Bacterial Nanocellulose Aerogel Membranes: Novel High-Porosity Materials for Membrane Distillation. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 85-91	11	61
60	Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. <i>AICHE Journal</i> , 2015 , 61, 1770-1782	3.6	57
59	Multiobjective Optimization Model for Minimizing Cost and Environmental Impact in Shale Gas Water and Wastewater Management. ACS Sustainable Chemistry and Engineering, 2016, 4, 3728-3735	8.3	49
58	Modular polymerized ionic liquid block copolymer membranes for CO2/N2 separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7967-7972	13	44
57	Zwitterionic copolymer additive architecture affects membrane performance: fouling resistance and surface rearrangement in saline solutions. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4829-4846	13	43

(2015-2018)

56	Fundamental challenges and engineering opportunities in flue gas desulfurization wastewater treatment at coal fired power plants. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 909-925	4.2	38	
55	Water Treatment Capacity of Forward-Osmosis Systems Utilizing Power-Plant Waste Heat. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 6378-6389	3.9	36	
54	Expert Elicitation of Trends in Marcellus Oil and Gas Wastewater Management. <i>Journal of Environmental Engineering, ASCE</i> , 2014 , 140,	2	32	
53	Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes. <i>Journal of Colloid and Interface Science</i> , 2015 , 460, 321-8	9.3	29	
52	Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination. <i>Environmental Science & Electrochemical</i> 2018, 52, 12633-12641	10.3	27	
51	Magnetically Directed Two-Dimensional Crystallization of OmpF Membrane Proteins in Block Copolymers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 28-31	16.4	25	
50	Desalination for a circular water economy. Energy and Environmental Science, 2020, 13, 3180-3184	35.4	24	
49	Ion Transport and Competition Effects on NaTi(PO) and NaMnO Selective Insertion Electrode Performance. <i>Langmuir</i> , 2017 , 33, 12580-12591	4	22	
48	Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1862-1867	11.5	20	
47	Crosslinked poly(ethylene oxide) containing siloxanes fabricated through thiol-ene photochemistry. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 1548-1557	2.5	20	
46	Economic and policy drivers of agricultural water desalination in Californial central valley. <i>Agricultural Water Management</i> , 2017 , 194, 192-203	5.9	18	
45	High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California. <i>Environmental Research Letters</i> , 2017 , 12, 094010	6.2	18	
44	Cost Comparison of Capacitive Deionization and Reverse Osmosis for Brackish Water Desalination. <i>ACS ES&T Engineering</i> , 2021 , 1, 261-273		18	
43	Assessing the demand response capacity of U.S. drinking water treatment plants. <i>Applied Energy</i> , 2020 , 267, 114899	10.7	17	
42	Computational framework for modeling membrane processes without process and solution property simplifications. <i>Journal of Membrane Science</i> , 2019 , 573, 682-693	9.6	16	
41	Management and dewatering of brines extracted from geologic carbon storage sites. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 63, 194-214	4.2	15	
40	Characterizing convective heat transfer coefficients in membrane distillation cassettes. <i>Journal of Membrane Science</i> , 2017 , 538, 108-121	9.6	14	
39	Electrodeposited MnO2 For Pseudocapacitive Deionization: Relating Deposition Condition and Electrode Structure to Performance. <i>Electrochimica Acta</i> , 2015 , 182, 1008-1018	6.7	14	

38	Retrofitting the Regulated Power Plant: Optimizing Energy Allocation to Electricity Generation, Water Treatment, and Carbon Capture Processes at Coal-Fired Generating Facilities. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2694-2703	8.3	14
37	Stable sequestration of single-walled carbon nanotubes in self-assembled aqueous nanopores. Journal of the American Chemical Society, 2012 , 134, 3950-3	16.4	14
36	Cost Optimization of Osmotically Assisted Reverse Osmosis. <i>Environmental Science & Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 11813-11821	10.3	14
35	Flue Gas Desulfurization Wastewater Composition and Implications for Regulatory and Treatment Train Design. <i>Environmental Science & Environmental Sci</i>	10.3	13
34	Understanding and mitigating performance decline in electrochemical deionization. <i>Current Opinion in Chemical Engineering</i> , 2019 , 25, 67-74	5.4	11
33	Air Emissions Damages from Municipal Drinking Water Treatment Under Current and Proposed Regulatory Standards. <i>Environmental Science & Environmental </i>	10.3	11
32	Learning is inhibited by heat exposure, both internationally and within the United States. <i>Nature Human Behaviour</i> , 2021 , 5, 19-27	12.8	10
31	Emerging Pollutants [Part II: Treatment. Water Environment Research, 2013, 85, 2022-2071	2.8	9
30	Trace Element Mass Flow Rates from U.S. Coal Fired Power Plants. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 5585-5595	10.3	8
29	Cost optimization of high recovery single stage gap membrane distillation. <i>Journal of Membrane Science</i> , 2020 , 611, 118370	9.6	8
28	Impact of module design on heat transfer in membrane distillation. <i>Journal of Membrane Science</i> , 2020 , 601, 117898	9.6	8
27	Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials. <i>ACS Applied Materials & Design</i> , 11, 22661-22	2672	8
26	Technoeconomic Optimization of Emerging Technologies for Regulatory Analysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2370-2378	8.3	8
25	Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants. <i>Environmental Science & Environmental Scie</i>	10.3	8
24	Environmentally significant shifts in trace element emissions from coal plants complying with the 1990 Clean Air Act Amendments. <i>Energy Policy</i> , 2019 , 132, 1206-1215	7.2	8
23	Performance Loss of Activated Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property Predictors. <i>Environmental Science & Environmental Science & Envi</i>	10.3	8
22	Cost optimization of multi-stage gap membrane distillation. <i>Journal of Membrane Science</i> , 2021 , 627, 119228	9.6	8
21	Direct Electrochemical Pathways for Selenium Reduction in Aqueous Solutions. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2027-2036	8.3	7

(2021-2017)

20	Computing the Diamagnetic Susceptibility and Diamagnetic Anisotropy of Membrane Proteins from Structural Subunits. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 2945-2953	6.4	6	
19	Surface cell density effects on Escherichia coli gene expression during cell attachment. <i>Environmental Science & Description (Common and Science & Description and Science & Description (Common and Science & Description)</i>	10.3	6	
18	Foulant Adsorption to Heterogeneous Surfaces with Zwitterionic Nanoscale Domains. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4709-4718	4.3	6	
17	Cost and energy intensity of U.S. potable water reuse systems. <i>Environmental Science: Water Research and Technology</i> , 2021 , 7, 748-761	4.2	6	
16	Allocating Damage Compensation in a Federalist System: Lessons from Spatially Resolved Air Emissions in the Marcellus. <i>Environmental Science & Emissions (Compensation of Compensation of Com</i>	10.3	4	
15	Optimization Framework to Assess the Demand Response Capacity of a Water Distribution System. Journal of Water Resources Planning and Management - ASCE, 2020 , 146, 04020063	2.8	4	
14	Marginal energy intensity of water supply. Energy and Environmental Science,	35.4	4	
13	Neural networks for estimating physical parameters in membrane distillation. <i>Journal of Membrane Science</i> , 2020 , 610, 118285	9.6	3	
12	High-impact innovations for high-salinity membrane desalination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3	
11	Carbon Benefits of Drinking Water Treatment Electrification. ACS ES&T Engineering,		2	
10	Desalination Process Design Assisted by Osmotic Power for High Water Recovery and Low Energy Consumption. <i>ACS Sustainable Chemistry and Engineering</i> ,	8.3	1	
9	Energy-Optimal Siting of Decentralized Water Recycling Systems. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 15343-15350	10.3	1	
8	Quantifying uncertainty in groundwater depth from sparse well data in the California Central Valley. <i>Environmental Research Letters</i> , 2020 , 15, 084029	6.2	1	
7	Energy and CO Emissions Penalty Ranges for Geologic Carbon Storage Brine Management. <i>Environmental Science & Environmental Sc</i>	10.3	1	
6	Technoeconomic Assessment of a Sequential Step-Leaching Process for Rare Earth Element Extraction from Acid Mine Drainage Precipitates. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 9308-9316	8.3	1	
5	Recommendations for Advancing FAIR and Open Data Standards in the Water Treatment Community. ACS ES&T Engineering,		O	
4	Competing Ion Behavior in Direct Electrochemical Selenite Reduction. <i>ACS ES&T Engineering</i> , 2021 , 1, 1028-1035		0	
3	The Economic Infeasibility of Salinity Gradient Energy via Pressure Retarded Osmosis. <i>ACS ES&T Engineering</i> , 2021 , 1, 1113-1121		О	

Real-time feedback improves multi-stakeholder design for complex environmental systems. Environmental Research Communications, **2021**, 3, 045006

3.1

Water Desalination: Electrostatic and Electrochemical Separation Processes 2019, 1-25