Khalil Alipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9315046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	6AP wheel: A new transformable robotic wheel for traction force improvement and halting avoidance of a UGV on soft terrains. Mechanics Based Design of Structures and Machines, 2022, 50, 3370-3385.	4.7	4
2	Formation control of multiple wheeled mobile robots based on model predictive control. Robotica, 2022, 40, 3178-3213.	1.9	6
3	Falling Analysis and Examination of Different Novel Strategies for Preserving the Postural Stability of a User Wearing ASR-EXO during Stair Climbing. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, 1.	3.4	2
4	A New Sensor for Robotic Mars Rovers in Sandy Terrains Predicting Critical Soil Flow Using the Spiral Soil Flow Model. Robotica, 2021, 39, 346-365.	1.9	2
5	A numerical algorithm to find optimum parameters of a flexible-link manipulator arm for performing payload launching. Engineering Computations, 2021, ahead-of-print, .	1.4	0
6	New Adaptive Segmented Wheel for Locomotion Improvement of Field Robots on Soft Terrain. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 97, 695-717.	3.4	8
7	Developing an adaptable pipe inspection robot using shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 2020, 31, 632-647.	2.5	24
8	Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 1457-1471.	1.8	25
9	A full-state trajectory tracking controller for tractor-trailer wheeled mobile robots. Mechanism and Machine Theory, 2020, 150, 103872.	4.5	24
10	Tracking-Error Fuzzy-Based Control for Nonholonomic Wheeled Robots. Arabian Journal for Science and Engineering, 2019, 44, 881-892.	3.0	12
11	Near-time-optimal motion control for flexible-link systems using absolute nodal coordinates formulation. Mechanism and Machine Theory, 2019, 140, 686-710.	4.5	10
12	A kinematic Lyapunov-based controller to posture stabilization of wheeled mobile robots. Mechanical Systems and Signal Processing, 2019, 134, 106319.	8.0	24
13	Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip. Mechanism and Machine Theory, 2019, 138, 16-37.	4.5	67
14	Control of tractor-trailer wheeled robots considering self-collision effect and actuator saturation limitations. Mechanical Systems and Signal Processing, 2019, 127, 388-411.	8.0	52
15	A self-tuning trajectory tracking controller for wheeled mobile robots. Industrial Robot, 2019, 46, 828-838.	2.1	10
16	Synergy-Based Gaussian Process Estimation of Ankle Angle and Torque: Conceptualization for High Level Controlling of Active Robotic Foot Prostheses/Orthoses. Journal of Biomechanical Engineering, 2019, 141, .	1.3	16
17	Comparison of various input shaping methods in rest-to-rest motion of the end-effecter of a rigid-flexible robotic system with large deformations capability. Mechanical Systems and Signal Processing, 2019, 118, 584-602.	8.0	16
18	The Effect of Remote Center Compliance Parameters on Formation Control of Cooperative Wheeled Mobile Robots for Object Manipulation. International Journal of Control, Automation and Systems, 2018, 16, 306-317.	2.7	5

KHALIL ALIPOUR

#	Article	IF	CITATIONS
19	ASR glove: A wearable glove for hand assistance and rehabilitation using shape memory alloys. Journal of Intelligent Material Systems and Structures, 2018, 29, 1575-1585.	2.5	45
20	Control of Nonholonomic Electrically-Driven Tractor-Trailer Wheeled Robots based on Adaptive Partial Linearization. , 2018, , .		4
21	On the capability of wheeled mobile robots for heavy object manipulation considering dynamic stability constraints. Multibody System Dynamics, 2017, 41, 101-123.	2.7	12
22	Continuous mobility of mobile robots with a special ability for overcoming driving failure on rough terrain. Robotica, 2017, 35, 2076-2096.	1.9	2
23	Alleviating Credit Assignment problem using deep representation learning with application to Push Recovery learning. , 2017, , .		Ο
24	Knee rehabilitation robot control by Sliding-Backstepping and Admittance control. , 2017, , .		1
25	Learning a model-free robotic continuous state-action task through contractive Q-network. , 2017, , .		2
26	Design and Prototyping a New Add-on Module to Increase Traction Force of a Wheeled Sewer Inspection Robot. , 2017, , .		1
27	Design of a High Level Controller for Active Foot Prostheses using Gaussian Process Intent Recognition. , 2017, , .		Ο
28	Impact of Electro-mechanical Properties of the Actuation Mechanism on the Peak Power and Energy Requirements of Active Foot Prostheses. , 2017, , .		0
29	Design and Implementation of a Cable Driven Lower Limb Exoskeleton for Stair Climbing. , 2017, , .		3
30	Conceptual design of a lower limb exoskeleton actuated by shape memory alloys for assisting elderly people in stair climbing. , 2016, , .		1
31	Kinematic analysis of Darwin's humanoid robot. , 2016, , .		6
32	An algorithm for dynamic object manipulation by a flexible link robot. Engineering Computations, 2016, 33, 1508-1529.	1.4	5
33	Developing a novel continuum module actuated by shape memory alloys. Sensors and Actuators A: Physical, 2016, 243, 90-102.	4.1	27
34	Dynamics modeling and attitude control of a flexible space system with active stabilizers. Nonlinear Dynamics, 2016, 84, 2535-2545.	5.2	13
35	Best parameters of flexible link manipulator systems for Dynamic Object Manipulation execution. , 2015, , .		1
36	Dynamically stable motion planning of wheeled robots for heavy object manipulation. Advanced Robotics, 2015, 29, 545-560.	1.8	14

KHALIL ALIPOUR

#	Article	IF	CITATIONS
37	A new approach for Kinematics-based design of 3-RRR delta robots with a specified workspace. , 2015, , .		7
38	Effect of Terrain Traction, Suspension Stiffness and Grasp Posture on the Tip-Over Stability of Wheeled Robots with Multiple Arms. Advanced Robotics, 2012, 26, 817-842.	1.8	14
39	Point-to-point stable motion planning of wheeled mobile robots with multiple arms for heavy object manipulation. , 2011, , .		5
40	How to ensure stable motion of suspended wheeled mobile robots. Industrial Robot, 2011, 38, 139-152.	2.1	20
41	Dynamics and stability of a hybrid serial-parallel mobile robot. Mathematical and Computer Modelling of Dynamical Systems, 2010, 16, 35-56.	2.2	8
42	Postural stability of wheeled mobile manipulators with flexible suspension considering tire friction model. , 2009, , .		5
43	Kinematics and dynamics of a hybrid serial-parallel mobile robot. , 2009, , .		11
44	Postural stability evaluation of spatial wheeled mobile robots with flexible suspension over rough terrains. , 2008, , .		1
45	Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. , 2007, , .		9
46	Stability Evaluation of Mobile Robotic Systems using Moment-Height Measure. , 2006, , .		12
47	Moment-Height Tip-Over Measure for Stability Analysis of Mobile Robotic Systems. , 2006, , .		25