Kevin J Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9315035/publications.pdf Version: 2024-02-01

KEVIN I SANCHEZ

#	Article	lF	CITATIONS
1	Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature, 2017, 546, 637-641.	27.8	232
2	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	3.3	103
3	Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 2021, 102, E894-E928.	3.3	103
4	Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating State for Two California, USA, Cities in Winter and Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1550-1577.	3.3	99
5	Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmospheric Environment, 2012, 46, 354-364.	4.1	83
6	Influence of Emissions and Aqueous Processing on Particles Containing Black Carbon in a Polluted Urban Environment: Insights From a Soot Particleâ€Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6648-6666.	3.3	41
7	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	3.3	36
8	Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations. Atmospheric Chemistry and Physics, 2021, 21, 3427-3446.	4.9	35
9	Cloudâ€Nucleating Particles Over the Southern Ocean in a Changing Climate. Earth's Future, 2021, 9, e2020EF001673.	6.3	33
10	High Temporal Resolution Satellite Observations of Fire Radiative Power Reveal Link Between Fire Behavior and Aerosol and Gas Emissions. Geophysical Research Letters, 2020, 47, e2020GL090707.	4.0	30
11	Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric Measurement Techniques, 2021, 14, 4517-4542.	3.1	28
12	Rapid cloud removal of dimethyl sulfide oxidation products limits SO ₂ and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
13	Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions. Atmospheric Measurement Techniques, 2018, 11, 2583-2599.	3.1	25
14	Meteorological and aerosol effects on marine cloud microphysical properties. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4142-4161.	3.3	24
15	Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,707.	3.3	22
16	Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics, 2017, 17, 9797-9814.	4.9	21
17	Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign. Remote Sensing, 2020, 12, 3823.	4.0	18
18	Lower NO <i>_x</i> but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 2017, 51, 123-134.	3.1	15

Kevin J Sanchez

#	Article	IF	CITATIONS
19	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	4.9	15
20	More unsaturated, cooking-type hydrocarbon-like organic aerosol particle emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 2017, 51, 135-146.	3.1	14
21	Organic composition of three different size ranges of aerosol particles over the Southern Ocean. Aerosol Science and Technology, 2021, 55, 268-288.	3.1	13
22	Nocturnal isoprene declines in a semi-urban environment. Journal of Atmospheric Chemistry, 2015, 72, 215-234.	3.2	10
23	Larger Submicron Particles for Emissions With Residential Burning in Wintertime San Joaquin Valley (Fresno) than for Vehicle Combustion in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,526.	3.3	10
24	Linking Marine Biological Activity to Aerosol Chemical Composition and Cloudâ€Relevant Properties Over the North Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032246.	3.3	10
25	Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	10
26	Aerosol–cloud closure study on cloud optical properties using remotely piloted aircraft measurements during a BACCHUS field campaign in Cyprus. Atmospheric Chemistry and Physics, 2019, 19, 13989-14007.	4.9	8
27	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	4.9	4
28	Measured Constraints on Cloud Top Entrainment to Reduce Uncertainty of Nonprecipitating Stratocumulus Shortwave Radiative Forcing in the Southern Ocean. Geophysical Research Letters, 2020, 47, e2020GL090513.	4.0	3
29	Characterizing Subsiding Shells in Shallow Cumulus Using Doppler Lidar and Largeâ€Eddy Simulation. Geophysical Research Letters, 2020, 47, e2020GL089699.	4.0	3
30	Deduction of the acoustic impedance of the ground via a simulated three-dimensional microphone array. Journal of the Acoustical Society of America, 2013, 134, EL471-EL476.	1.1	2