
Chong Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9314595/publications.pdf Version: 2024-02-01

Сномстио

#	Article	IF	CITATIONS
1	Fast Gelation of Ti ₃ C ₂ T <i>_x</i> MXene Initiated by Metal Ions. Advanced Materials, 2019, 31, e1902432.	11.1	389
2	Bidirectional Catalysts for Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2000315.	11.1	274
3	Optimized Catalytic WS ₂ –WO ₃ Heterostructure Design for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2000091.	10.2	221
4	The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nature Communications, 2020, 11, 3544.	5.8	204
5	Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Materials, 2016, 3, 18-23.	9.5	163
6	Cobalt-Doping of Molybdenum Disulfide for Enhanced Catalytic Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 7491-7499.	7.3	136
7	Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon, 2016, 109, 1-6.	5.4	119
8	Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading. Advanced Functional Materials, 2021, 31, 2100793.	7.8	95
9	Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale, 2015, 7, 18459-18463.	2.8	94
10	An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive. Nano Energy, 2017, 40, 240-247.	8.2	81
11	Twin-functional graphene oxide: compacting with Fe 2 O 3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Materials, 2017, 6, 98-103.	9.5	74
12	Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery. Nano Energy, 2016, 30, 138-145.	8.2	71
13	An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Materials, 2020, 33, 290-297.	9.5	69
14	Dual-functional hard template directed one-step formation of a hierarchical porous carbon–carbon nanotube hybrid for lithium–sulfur batteries. Chemical Communications, 2016, 52, 12143-12146.	2.2	63
15	Nitrate Additives Coordinated with Crown Ether Stabilize Lithium Metal Anodes in Carbonate Electrolyte. Advanced Functional Materials, 2021, 31, 2102128.	7.8	56
16	Multifunctional Graphene Hair Dye. CheM, 2018, 4, 784-794.	5.8	55
17	Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. Nano Energy, 2019, 64, 103936.	8.2	47
18	A Cutâ€∎ndâ€₽aste Approach to 3D Grapheneâ€Oxideâ€Based Architectures. Advanced Materials, 2018, 30, e1706229.	11.1	46

CHONG LUO

#	Article	IF	CITATIONS
19	Capillary shrinkage of graphene oxide hydrogels. Science China Materials, 2020, 63, 1870-1877.	3.5	41
20	A Hollow Spherical Carbon Derived from the Spray Drying of Corncob Lignin for Highâ€Rateâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 503-506.	1.7	29
21	Graphene Oxide Sheets in Solvents: To Crumple or Not To Crumple?. ACS Omega, 2017, 2, 8005-8009.	1.6	27
22	A Dual-Function Na ₂ SO ₄ Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries. Small, 2017, 13, 1700358.	5.2	26
23	Direct assembly of micron-size porous graphene spheres with a high density as supercapacitor materials. Carbon, 2019, 149, 492-498.	5.4	20
24	A facile, fast responsive and highly selective mercury(<scp>ii</scp>) probe characterized by the fluorescence quenching of 2,9-dimethyl-1,10-phenanthroline and two new metal–organic frameworks. RSC Advances, 2016, 6, 66215-66223.	1.7	16
25	Realizing Ultralow Concentration Gelation of Graphene Oxide with Artificial Interfaces. Advanced Materials, 2019, 31, e1805075.	11.1	16
26	Porous carbons derived from carbonization of tissue papers for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 11250-11256.	1.1	11
27	Fast three-dimensional assembly of MoS2 inspired by the gelation of graphene oxide. Science China Materials, 2019, 62, 745-750.	3.5	10
28	Dense yet highly ion permeable graphene electrodes obtained by capillary-drying of a holey graphene oxide assembly. Journal of Materials Chemistry A, 2019, 7, 12691-12697.	5.2	9