Anna K Undas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9314445/publications.pdf

Version: 2024-02-01

516215 713013 1,563 21 16 21 h-index citations g-index papers 22 22 22 2390 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science and Technology, 2016, 54, 155-164.	7.8	294
2	Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 2010, 187, 343-354.	3.5	243
3	Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. Journal of Analytical Atomic Spectrometry, 2015, 30, 1274-1285.	1.6	193
4	Detection of nanoparticles in Dutch surface waters. Science of the Total Environment, 2018, 621, 210-218.	3.9	157
5	Detection of titanium particles in human liver and spleen and possible health implications. Particle and Fibre Toxicology, 2018, 15, 15.	2.8	115
6	Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. Journal of Analytical Atomic Spectrometry, 2018, 33, 835-845.	1.6	74
7	Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology, 2020, 14, 420-432.	1.6	64
8	Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environmental Pollution, 2016, 218, 870-878.	3.7	63
9	Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Analytical and Bioanalytical Chemistry, 2017, 409, 63-80.	1.9	57
10	Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?. Environmental Science: Nano, 2018, 5, 1107-1116.	2.2	51
11	Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology, 2016, 10, 1431-1441.	1.6	49
12	Particle size analysis of pristine food-grade titanium dioxide and E 171 in confectionery products: Interlaboratory testing of a single-particle inductively coupled plasma mass spectrometry screening method and confirmation with transmission electron microscopy. Food Control, 2021, 120, 107550.	2.8	48
13	Impact of <i>in vitro</i> digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology, 2020, 14, 111-126.	1.6	40
14	A novel method for the quantification, characterisation and speciation of silver nanoparticles in earthworms exposed in soil. Environmental Chemistry, 2015, 12, 643.	0.7	26
15	Sticky Measurement Problem: Number Concentration of Agglomerated Nanoparticles. Langmuir, 2019, 35, 4927-4935.	1.6	26
16	Suitability of analytical methods to measure solubility for the purpose of nanoregulation. Nanotoxicology, 2016, 10, 1-12.	1.6	25
17	Determination of the Transport Efficiency in spICP-MS Analysis Using Conventional Sample Introduction Systems: An Interlaboratory Comparison Study. Nanomaterials, 2022, 12, 725.	1.9	14
18	Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications. Frontiers in Plant Science, 2016, 7, 312.	1.7	12

Anna K Undas

#	Article	IF	CITATION
19	The Use of Metabolomics to Elucidate Resistance Markers against Damson-Hop Aphid. Journal of Chemical Ecology, 2018, 44, 711-726.	0.9	5
20	Cross-platform comparative analyses of genetic variation in amino acid content in potato tubers. Metabolomics, 2014, 10, 1239-1257.	1.4	3
21	Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules, 2021, 26, 5315.	1.7	2