Manuel Perez-Mateos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9314241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. Journal of the Science of Food and Agriculture, 2010, 90, 1238-1244.	3.5	322
2	Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices. Food Chemistry, 2007, 104, 1177-1182.	8.2	113
3	Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chemistry, 2004, 88, 209-217.	8.2	110
4	Neutrase Immobilization on Alginateâ^'Glutaraldehyde Beads by Covalent Attachment. Journal of Agricultural and Food Chemistry, 2009, 57, 109-115.	5.2	86
5	Kinetics of cellulose saccharification by Trichoderma reesei cellulases. International Biodeterioration and Biodegradation, 2001, 47, 7-14.	3.9	61
6	Kinetic behaviour and thermal inactivation of pectinlyase used in food processing. International Journal of Food Science and Technology, 2004, 39, 631-639.	2.7	42
7	Stability and properties of alkaline phosphate immobilized by a rendzina soil. Journal of the Science of Food and Agriculture, 1991, 55, 229-240.	3.5	41
8	Characterization of β- d -glucosidase extracted from soil fractions. European Journal of Soil Science, 2000, 51, 193-200.	3.9	40
9	Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils. Food Chemistry, 2014, 158, 374-383.	8.2	38
10	Extraction of humic-?-glucosidase fractions from soil. Biology and Fertility of Soils, 1995, 20, 77-82.	4.3	32
11	Pectin hydrolysis in a free enzyme membrane reactor: An approach to the wine and juice clarification. Food Chemistry, 2008, 107, 112-119.	8.2	32
12	Effect of fractionation on location of enzyme activities in soil structural units. Biology and Fertility of Soils, 1985, 1, 153-159.	4.3	31
13	Characterization of microbial endo-?-glucanase immobilized in alginate beads. Acta Biotechnologica, 1998, 18, 189-200.	0.9	31
14	Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088. Food Chemistry, 2007, 101, 634-642.	8.2	29
15	Stabilisation of β-glucosidase entrapped in alginate and polyacrylamide gels towards thermal and proteolytic deactivation. Journal of Chemical Technology and Biotechnology, 1998, 73, 7-12.	3.2	20
16	Induction of β-glucosidase in fungal and soil bacterial cultures. Soil Biology and Biochemistry, 1995, 27, 949-954.	8.8	16
17	Application of experimental design to the formulation of glucose oxidase encapsulation by liposomes. Journal of Chemical Technology and Biotechnology, 2004, 79, 700-705.	3.2	12
18	Alkaline Phosphataseâ^'Polyresorcinol Complex: Characterization and Application to Seed Coating. Journal of Agricultural and Food Chemistry, 2009, 57, 1967-1974.	5.2	12

MANUEL PEREZ-MATEOS

#	Article	IF	CITATIONS
19	Kinetic behaviour and stability ofEscherichia coli ATCC27257 alkaline phosphatase immobilised in soil humates. Journal of the Science of Food and Agriculture, 2003, 83, 232-239.	3.5	11
20	Barley seed coating with free and immobilized alkaline phosphatase to improve P uptake and plant growth. Journal of Agricultural Science, 2012, 150, 691-701.	1.3	11
21	Prediction of the Ripening Times of Ewe's Milk Cheese by Multivariate Regression Analysis of Capillary Electrophoresis Casein Fractions. Journal of Agricultural and Food Chemistry, 2006, 54, 8281-8287.	5.2	10
22	Analysis by capillary electrophoresis of the proteolytic activity of a Bacillus subtilis neutral protease on bovine caseins. International Dairy Journal, 2007, 17, 1195-1200.	3.0	9
23	Enzymatic Saccharification of Pretreated Wheat Straw by <i>T. Reesei</i> Cellulases and <i>A. Niger</i> β-Glucosidase. Biocatalysis and Biotransformation, 2000, 18, 311-330.	2.0	8
24	Chemometrical Analysis of Capillary Electrophoresis Casein Fractions for Predicting Ripening Times of Milk Mixture Cheese. Journal of Agricultural and Food Chemistry, 2005, 53, 6094-6099.	5.2	8
25	Synthesis and characterization of a stable humic–urease complex: application to barley seed encapsulation for improving N uptake. Journal of the Science of Food and Agriculture, 2016, 96, 2981-2989.	3.5	7
26	Assay of urease activity in soil columns. Soil Biology and Biochemistry, 1988, 20, 567-572.	8.8	6
27	Barley Seeds Encapsulated in Calciumâ€Alginate Gels with Phosphatase and Humateâ€Phosphatase Complexes for Improving Phosphorus Bioavailability. Agronomy Journal, 2013, 105, 1565-1570.	1.8	4
28	Studies on the stability of acid phosphatase (A. niger) by crosslinking with glutaraldehyde and soil humates. Progress in Biotechnology, 1998, 15, 157-161.	0.2	1
29	Barley seed coating with urease and phosphatase to improve N and P uptake. Scientia Agricola, 2020, 77,	1.2	Ο