Steven Grant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9313546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature, 1996, 380, 75-79.	27.8	1,789
3	New Insights into Checkpoint Kinase 1 in the DNA Damage Response Signaling Network. Clinical Cancer Research, 2010, 16, 376-383.	7.0	389
4	Vorinostat. Nature Reviews Drug Discovery, 2007, 6, 21-22.	46.4	381
5	The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Research, 2003, 63, 3637-45.	0.9	375
6	Synergistic Induction of Oxidative Injury and Apoptosis in Human Multiple Myeloma Cells by the Proteasome Inhibitor Bortezomib and Histone Deacetylase Inhibitors. Clinical Cancer Research, 2004, 10, 3839-3852.	7.0	371
7	Mcl-1 Down-regulation Potentiates ABT-737 Lethality by Cooperatively Inducing Bak Activation and Bax Translocation. Cancer Research, 2007, 67, 782-791.	0.9	366
8	Apoptosis Induced by the Kinase Inhibitor BAY 43-9006 in Human Leukemia Cells Involves Down-regulation of Mcl-1 through Inhibition of Translation. Journal of Biological Chemistry, 2005, 280, 35217-35227.	3.4	266
9	The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood, 2003, 102, 3765-3774.	1.4	256
10	Blockade of Histone Deacetylase Inhibitor-Induced RelA/p65 Acetylation and NF-κB Activation Potentiates Apoptosis in Leukemia Cells through a Process Mediated by Oxidative Damage, XIAP Downregulation, and c-Jun N-Terminal Kinase 1 Activation. Molecular and Cellular Biology, 2005, 25, 5429-5444.	2.3	237
11	Phase I Study of Vorinostat in Combination with Bortezomib for Relapsed and Refractory Multiple Myeloma. Clinical Cancer Research, 2009, 15, 5250-5257.	7.0	228
12	Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. , 2014, 143, 323-336.		219
13	The Kinase Inhibitor Sorafenib Induces Cell Death through a Process Involving Induction of Endoplasmic Reticulum Stress. Molecular and Cellular Biology, 2007, 27, 5499-5513.	2.3	209
14	Coadministration of Histone Deacetylase Inhibitors and Perifosine Synergistically Induces Apoptosis in Human Leukemia Cells through Akt and ERK1/2 Inactivation and the Generation of Ceramide and Reactive Oxygen Species. Cancer Research, 2005, 65, 2422-2432.	0.9	195
15	The combination of bendamustine, bortezomib, and rituximab for patients with relapsed/refractory indolent and mantle cell non-Hodgkin lymphoma. Blood, 2011, 117, 2807-2812.	1.4	186
16	Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Molecular Cancer Therapeutics, 2003, 2, 1273-84.	4.1	181
17	Roles of Erbb family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Frontiers in Bioscience - Landmark, 2002, 7, d376.	3.0	170
18	Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biology and Therapy, 2008, 7, 1648-1662.	3.4	159

#	Article	IF	CITATIONS
19	The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Experimental Cell Research, 2004, 295, 555-566.	2.6	139
20	Dual Inhibition of Bcl-2 and Bcl-xL Strikingly Enhances PI3K Inhibition-Induced Apoptosis in Human Myeloid Leukemia Cells through a GSK3- and Bim-Dependent Mechanism. Cancer Research, 2013, 73, 1340-1351.	0.9	139
21	Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-lºB-dependent process. Oncogene, 2003, 22, 7108-7122.	5.9	136
22	Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opinion on Investigational Drugs, 2013, 22, 723-738.	4.1	132
23	Bim Upregulation by Histone Deacetylase Inhibitors Mediates Interactions with the Bcl-2 Antagonist ABT-737: Evidence for Distinct Roles for Bcl-2, Bcl-x _L , and Mcl-1. Molecular and Cellular Biology, 2009, 29, 6149-6169.	2.3	123
24	Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene, 2001, 20, 3266-3280.	5.9	121
25	Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology, 2004, 40, 961-971.	7.3	115
26	Cotargeting survival signaling pathways in cancer. Journal of Clinical Investigation, 2008, 118, 3513-3513.	8.2	114
27	Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Research, 2003, 63, 2118-26.	0.9	108
28	Cotargeting survival signaling pathways in cancer. Journal of Clinical Investigation, 2008, 118, 3003-6.	8.2	106
29	The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood, 2010, 115, 4478-4487.	1.4	105
30	Interruption of the NF-κB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood, 2004, 103, 2761-2770.	1.4	104
31	Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Molecular Cancer Therapeutics, 2008, 7, 3285-3297.	4.1	104
32	Cyclin-dependent kinase inhibitors. Current Opinion in Pharmacology, 2003, 3, 362-370.	3.5	99
33	Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21CIP1/WAF1 induction rather than AKT inhibition. Oncogene, 2003, 22, 6231-6242.	5.9	98
34	Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood, 2012, 119, 6089-6098.	1.4	98
35	2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Akt-dependent process. Oncogene, 2005, 24, 3797-3809.	5.9	97
36	Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6–independent mechanism. Blood, 2002, 100, 3333-3343.	1.4	96

#	Article	IF	CITATIONS
37	Vorinostat and Sorafenib Increase CD95 Activation in Gastrointestinal Tumor Cells through a Ca2+- <i>De novo</i> Ceramide-PP2A-Reactive Oxygen Species–Dependent Signaling Pathway. Cancer Research, 2010, 70, 6313-6324.	0.9	95
38	Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor–induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood, 2008, 112, 2439-2449.	1.4	91
39	Cotargeting BCL-2 and PI3K Induces BAX-Dependent Mitochondrial Apoptosis in AML Cells. Cancer Research, 2018, 78, 3075-3086.	0.9	91
40	Inhibition of MCL-1 enhances Lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy. Cancer Biology and Therapy, 2009, 8, 2084-2096.	3.4	88
41	Interactions between Bortezomib and Romidepsin and Belinostat in Chronic Lymphocytic Leukemia Cells. Clinical Cancer Research, 2008, 14, 549-558.	7.0	86
42	A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood, 2014, 124, 2687-2697.	1.4	82
43	The Bruton tyrosine kinase (<scp>BTK</scp>) inhibitor <scp>PCI</scp> â€32765 synergistically increases proteasome inhibitor activity in diffuse largeâ€B cell lymphoma (<scp>DLBCL</scp>) and mantle cell lymphoma (<scp>MCL</scp>) cells sensitive or resistant to bortezomib. British Journal of Haematology 2013 161 43-56	2.5	81
44	Cotreatment with Suberanoylanilide Hydroxamic Acid and 17-Allylamino 17-demethoxygeldanamycin Synergistically Induces Apoptosis in Bcr-Abl+Cells Sensitive and Resistant to STI571 (Imatinib Mesylate) in Association with Down-Regulation of Bcr-Abl, Abrogation of Signal Transducer and Activator of Transcription 5 Activity, and Bax Conformational Change. Molecular Pharmacology, 2005, 67, 1166-1176.	2.3	80
45	Sorafenib Activates CD95 and Promotes Autophagy and Cell Death via Src Family Kinases in Gastrointestinal Tumor Cells. Molecular Cancer Therapeutics, 2010, 9, 2220-2231.	4.1	79
46	The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Research, 2003, 63, 1822-33.	0.9	79
47	Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica, 2020, 105, 697-707.	3.5	78
48	The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/Akt and MEK/ERK1/2 pathways. Blood, 2009, 114, 4507-4516.	1.4	77
49	Evidence of a Functional Role for p21WAF1/CIP1Down-Regulation in Synergistic Antileukemic Interactions between the Histone Deacetylase Inhibitor Sodium Butyrate and Flavopiridol. Molecular Pharmacology, 2004, 65, 571-581.	2.3	76
50	Protein Kinase C Targeting in Antineoplastic Treatment Strategies. Investigational New Drugs, 1999, 17, 227-240.	2.6	73
51	HDAC Inhibitors Potentiate the Activity of the BCR/ABL Kinase Inhibitor KW-2449 in Imatinib-Sensitive or -Resistant BCR/ABL+ Leukemia Cells <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2011, 17, 3219-3232.	7.0	72
52	Phosphodiesterase 5 Inhibitors Enhance Chemotherapy Killing in Gastrointestinal/Genitourinary Cancer Cells. Molecular Pharmacology, 2014, 85, 408-419.	2.3	69
53	Update on rational targeted therapy in AML. Blood Reviews, 2016, 30, 275-283.	5.7	67
54	Biological Characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a Selective Sphingosine Kinase-2 Inhibitor and Anticancer Agent. PLoS ONE, 2013, 8, e56471.	2.5	67

#	Article	IF	CITATIONS
55	Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Molecular Cancer Therapeutics, 2007, 6, 692-702.	4.1	66
56	Synergistic Interactions between Vorinostat and Sorafenib in Chronic Myelogenous Leukemia Cells Involve Mcl-1 and p21CIP1 Down-Regulation. Clinical Cancer Research, 2007, 13, 4280-4290.	7.0	63
57	Targeting SQSTM1/p62 Induces Cargo Loading Failure and Converts Autophagy to Apoptosis via NBK/Bik. Molecular and Cellular Biology, 2014, 34, 3435-3449.	2.3	63
58	The NF (Nuclear factor)â€̂ºB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1â€dependent apoptosis in human acute myeloid leukaemia cells. British Journal of Haematology, 2010, 151, 70-83.	2.5	62
59	Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood, 2008, 112, 793-804.	1.4	61
60	Carfilzomib Interacts Synergistically with Histone Deacetylase Inhibitors in Mantle Cell Lymphoma Cells <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2011, 10, 1686-1697.	4.1	60
61	Hepatitis B virus X protein increases expression of p21Cip-1/WAF1/MDA6 and p27Kip-1 in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology, 2001, 34, 906-917.	7.3	59
62	Histone Deacetylase Inhibitors Activate NF-κB in Human Leukemia Cells through an ATM/NEMO-related Pathway. Journal of Biological Chemistry, 2010, 285, 10064-10077.	3.4	57
63	Bortezomib interacts synergistically with belinostat in human acute myeloid leukaemia and acute lymphoblastic leukaemia cells in association with perturbations in NFâ€₽B and Bim. British Journal of Haematology, 2011, 153, 222-235.	2.5	56
64	Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clinical Cancer Research, 2002, 8, 2976-84.	7.0	56
65	MEK1/2 inhibitors sensitize Bcr/Abl+ human leukemia cells to the dual Abl/Src inhibitor BMS-354/825. Blood, 2007, 109, 4006-4015.	1.4	55
66	Mcl-1 as a therapeutic target in acute myelogenous leukemia (AML). Leukemia Research Reports, 2013, 2, 12-14.	0.4	55
67	The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resistance Updates, 2003, 6, 15-26.	14.4	54
68	Contribution of Disruption of the Nuclear Factor-κB Pathway to Induction of Apoptosis in Human Leukemia Cells by Histone Deacetylase Inhibitors and Flavopiridol. Molecular Pharmacology, 2004, 66, 956-963.	2.3	54
69	Small molecule inhibitors targeting cyclin-dependent kinases as anticancer agents. Current Oncology Reports, 2004, 6, 123-130.	4.0	53
70	CDK Inhibitors Upregulate BH3-Only Proteins to Sensitize Human Myeloma Cells to BH3 Mimetic Therapies. Cancer Research, 2012, 72, 4225-4237.	0.9	51
71	The Novel Chk1 Inhibitor MK-8776 Sensitizes Human Leukemia Cells to HDAC Inhibitors by Targeting the Intra-S Checkpoint and DNA Replication and Repair. Molecular Cancer Therapeutics, 2013, 12, 878-889.	4.1	51
72	Phase I Trial of Bortezomib (PS-341; NSC 681239) and Alvocidib (Flavopiridol; NSC 649890) in Patients with Recurrent or Refractory B-Cell Neoplasms. Clinical Cancer Research, 2011, 17, 3388-3397.	7.0	49

#	Article	IF	CITATIONS
73	PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biology and Therapy, 2014, 15, 758-767.	3.4	48
74	Synergistic combinations of signaling pathway inhibitors: Mechanisms for improved cancer therapy. Drug Resistance Updates, 2009, 12, 65-73.	14.4	45
75	FAM83A and FAM83B: candidate oncogenes and TKI resistance mediators. Journal of Clinical Investigation, 2012, 122, 3048-3051.	8.2	45
76	Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: A novel synergistic therapeutic approach. Experimental Hematology, 2015, 43, 89-99.	0.4	44
77	MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Blood, 2007, 110, 2092-2101.	1.4	43
78	Cytokinetically quiescent (G0/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2. Blood, 2011, 118, 5189-5200.	1.4	42
79	Pazopanib and HDAC inhibitors interact to kill sarcoma cells. Cancer Biology and Therapy, 2014, 15, 578-585.	3.4	42
80	Regulation of OSU-03012 Toxicity by ER Stress Proteins and ER Stress–Inducing Drugs. Molecular Cancer Therapeutics, 2014, 13, 2384-2398.	4.1	42
81	The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood, 2016, 127, 2219-2230.	1.4	42
82	The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Molecular Cancer Therapeutics, 2002, 1, 253-66.	4.1	42
83	A focus on the preclinical development and clinical status of the histone deacetylase inhibitor, romidepsin (depsipeptide, Istodax [®]). Epigenomics, 2012, 4, 571-589.	2.1	39
84	Histone Deacetylase Inhibitors and Rational Combination Therapies. Advances in Cancer Research, 2012, 116, 199-237.	5.0	39
85	Dinaciclib (SCH727965) Inhibits the Unfolded Protein Response through a CDK1- and 5-Dependent Mechanism. Molecular Cancer Therapeutics, 2014, 13, 662-674.	4.1	39
86	<i>In Vitro</i> and <i>In Vivo</i> Interactions between the HDAC6 Inhibitor Ricolinostat (ACY1215) and the Irreversible Proteasome Inhibitor Carfilzomib in Non-Hodgkin Lymphoma Cells. Molecular Cancer Therapeutics, 2014, 13, 2886-2897.	4.1	37
87	Resveratrol Sensitizes Acute Myelogenous Leukemia Cells to Histone Deacetylase Inhibitors through Reactive Oxygen Species-Mediated Activation of the Extrinsic Apoptotic Pathway. Molecular Pharmacology, 2012, 82, 1030-1041.	2.3	36
88	Disruption of lκB Kinase (IKK)-mediated RelA Serine 536 Phosphorylation Sensitizes Human Multiple Myeloma Cells to Histone Deacetylase (HDAC) Inhibitors. Journal of Biological Chemistry, 2011, 286, 34036-34050.	3.4	35
89	A Phase II Trial of AZD6244 (Selumetinib, ARRY-142886), an Oral MEK1/2 Inhibitor, in Relapsed/Refractory Multiple Myeloma. Clinical Cancer Research, 2016, 22, 1067-1075.	7.0	35
90	The Covalent CDK7 Inhibitor THZ1 Potently Induces Apoptosis in Multiple Myeloma Cells <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2019, 25, 6195-6205.	7.0	35

#	Article	IF	CITATIONS
91	BCL-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress. Cancer Biology and Therapy, 2009, 8, 808-819.	3.4	34
92	A Phase I Trial of Vorinostat and Alvocidib in Patients with Relapsed, Refractory, or Poor Prognosis Acute Leukemia, or Refractory Anemia with Excess Blasts-2. Clinical Cancer Research, 2013, 19, 1873-1883.	7.0	32
93	Bortezomib for the treatment of non-Hodgkin's lymphoma. Expert Opinion on Pharmacotherapy, 2014, 15, 2443-2459.	1.8	32
94	HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells. Cancer Biology and Therapy, 2014, 15, 305-316.	3.4	32
95	Positive and negative regulation of JNK1 by protein kinase C and p42MAP kinasein adult rat hepatocytes. FEBS Letters, 1997, 412, 9-14.	2.8	31
96	An Intact NF-kappaB Pathway is Required for Histone Deacetylase Inhibitor Induced G1 Arrest and Maturation in U937 Human Myeloid Leukemia Cells. Cell Cycle, 2003, 2, 465-470.	2.6	31
97	Targeting Histone Demethylases in Cancer Therapy. Clinical Cancer Research, 2009, 15, 7111-7113.	7.0	30
98	A Phase II Trial of Bortezomib and Vorinostat in Mantle Cell Lymphoma and Diffuse Large B-cell Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 569-575.e1.	0.4	30
99	Disruption of Src function potentiates Chk1-inhibitor–induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood, 2011, 117, 1947-1957.	1.4	29
100	Obatoclax Interacts Synergistically with the Irreversible Proteasome Inhibitor Carfilzomib in GC- and ABC-DLBCL Cells <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2012, 11, 1122-1132.	4.1	29
101	Co-administration of the mTORC1/TORC2 inhibitor INK128 and the Bcl-2/Bcl-xL antagonist ABT-737 kills human myeloid leukemia cells through Mcl-1 down-regulation and AKT inactivation. Haematologica, 2015, 100, 1553-1563.	3.5	27
102	Circumvention of Mcl-1-Dependent Drug Resistance by Simultaneous Chk1 and MEK1/2 Inhibition in Human Multiple Myeloma Cells. PLoS ONE, 2014, 9, e89064.	2.5	27
103	Inhibition of MEK/ERK1/2 sensitizes lymphoma cells to sorafenib-induced apoptosis. Leukemia Research, 2010, 34, 379-386.	0.8	26
104	Phase I Trial of Bortezomib (PS-341; NSC 681239) and "Nonhybrid―(Bolus) Infusion Schedule of Alvocidib (Flavopiridol; NSC 649890) in Patients with Recurrent or Refractory Indolent B-cell Neoplasms. Clinical Cancer Research, 2014, 20, 5652-5662.	7.0	26
105	Rational combination of dual PI3K/mTOR blockade and Bcl-2/-xL inhibition in AML. Physiological Genomics, 2014, 46, 448-456.	2.3	26
106	Orphan drug designation for pracinostat, volasertib and alvocidib in AML. Leukemia Research, 2014, 38, 862-865.	0.8	26
107	Inhibition of the MDM2 E3 Ligase Induces Apoptosis and Autophagy in Wild-Type and Mutant p53 Models of Multiple Myeloma, and Acts Synergistically with ABT-737. PLoS ONE, 2014, 9, e103015.	2.5	26
108	Effect of pharmacologic manipulation of protein kinase C by phorbol dibutyrate and bryostatin 1 on the clonogenic response of human granulocyte-macrophage progenitors to recombinant GM-CSF. British Journal of Haematology, 1991, 77, 5-15.	2.5	25

#	Article	IF	CITATIONS
109	Leucovorin, 5-fluorouracil, and gemcitabine: A phase I study. Investigational New Drugs, 1999, 17, 57-61.	2.6	25
110	Proteasome inhibitors in mantle cell lymphoma. Best Practice and Research in Clinical Haematology, 2012, 25, 133-141.	1.7	25
111	PLK1 Inhibitors Synergistically Potentiate HDAC Inhibitor Lethality in Imatinib Mesylate–Sensitive or –Resistant BCR/ABL+ Leukemia Cells <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2013, 19, 404-414.	7.0	24
112	Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo. British Journal of Cancer, 2018, 118, 388-397.	6.4	23
113	Coadministration of UCN-01 with MEK1/2 Inhibitors Potently Induces Apoptosis in. Cancer Biology and Therapy, 2002, 1, 674-682.	3.4	22
114	Rational Combinations of Targeted Agents in AML. Journal of Clinical Medicine, 2015, 4, 634-664.	2.4	22
115	Is the focus moving toward a combination of targeted drugs?. Best Practice and Research in Clinical Haematology, 2008, 21, 629-637.	1.7	21
116	Phase 1 trial of carfilzomib (PR-171) in combination with vorinostat (SAHA) in patients with relapsed or refractory B-cell lymphomas. Leukemia and Lymphoma, 2016, 57, 635-643.	1.3	21
117	Experimental design and statistical analysis for three-drug combination studies. Statistical Methods in Medical Research, 2017, 26, 1261-1280.	1.5	21
118	Positive transcription elongation factor b (P-TEFb) is a therapeutic target in human multiple myeloma. Oncotarget, 2017, 8, 59476-59491.	1.8	21
119	An intact NF-kappaB pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle, 2003, 2, 467-72.	2.6	20
120	Targeting Chk1 in the replicative stress response. Cell Cycle, 2010, 9, 1025-1030.	2.6	19
121	Homoharringtonine interacts synergistically with bortezomib in NHL cells through MCL-1 and NOXA-dependent mechanisms. BMC Cancer, 2018, 18, 1129.	2.6	19
122	The IAP antagonist birinapant potentiates bortezomib anti-myeloma activity in vitro and in vivo. Journal of Hematology and Oncology, 2019, 12, 25.	17.0	19
123	Phase I trial of the combination of flavopiridol and imatinib mesylate in patients with Bcr-Abl+ hematological malignancies. Cancer Chemotherapy and Pharmacology, 2012, 69, 1657-1667.	2.3	18
124	Synergism between bosutinib (SKI-606) and the Chk1 inhibitor (PF-00477736) in highly imatinib-resistant BCR/ABL+ leukemia cells. Leukemia Research, 2015, 39, 65-71.	0.8	18
125	Simultaneous Interruption of Signal Transduction and Cell Cycle Regulatory Pathways: Implications for New Approaches to the Treatment of Childhood Leukemias. Current Drug Targets, 2007, 8, 751-759.	2.1	17
126	Romidepsin for the treatment of non-Hodgkin's lymphoma. Expert Opinion on Investigational Drugs, 2015, 24, 965-979.	4.1	17

#	Article	IF	CITATIONS
127	A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget, 2017, 8, 112184-112198.	1.8	17
128	Synergistic interactions between PLK1 and HDAC inhibitors in non-Hodgkin's lymphoma cells occur <i>in vitro</i> and <i>in vivo</i> and proceed through multiple mechanisms. Oncotarget, 2017, 8, 31478-31493.	1.8	16
129	Conversion of Drug-Induced Differentiation to Apoptosis by Pharmacologic Cyclin-Dependent Kinase Inhibitors. Cell Cycle, 2002, 1, 383-388.	2.6	15
130	LBH-589 (panobinostat) potentiates fludarabine anti-leukemic activity through a JNK- and XIAP-dependent mechanism. Leukemia Research, 2012, 36, 491-498.	0.8	12
131	Effects of bryostatin 1 and rGM-CSF on the metabolism of 1-β-d-arabinofuranosylcytosine in human leukaemic myeloblasts. British Journal of Haematology, 1992, 82, 522-528.	2.5	11
132	NOTCH1 Represses MCL-1 Levels in GSI-resistant T-ALL, Making them Susceptible to ABT-263. Clinical Cancer Research, 2019, 25, 312-324.	7.0	11
133	IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-ήB– and caspase-8–dependent mechanisms. Blood Advances, 2021, 5, 3776-3788.	5.2	10
134	Gene profiling and the cyclin-dependent kinase inhibitor flavopiridol: what's in a name?. Molecular Cancer Therapeutics, 2004, 3, 873-5.	4.1	10
135	Co-Administration of SAHA and 17-AAG Synergistically Induces Apoptosis in Bcr-Abl+ Cells Sensitive and Resistant to STI-571 in Association with Down-Regulation of Bcr-Abl, Abrogation of STAT5 Activity, and Bax Conformational Change Blood, 2004, 104, 1995-1995.	1.4	9
136	Rational combination strategies to enhance venetoclax activity and overcome resistance in hematologic malignancies. Leukemia and Lymphoma, 2018, 59, 1292-1299.	1.3	8
137	Enhancing venetoclax activity in hematological malignancies. Expert Opinion on Investigational Drugs, 2020, 29, 697-708.	4.1	7
138	The Role of Signal Transduction Pathways in Drug and Radiation Resistance. Cancer Treatment and Research, 2002, 112, 89-108.	0.5	7
139	Modulation of the expression of Bcl-2 and related proteins in human leukemia cells by protein kinase C activators: relationship to effects on 1-[β-D-arabinofuranosyl]cytosine-induced apoptosis. Cell Death and Differentiation, 1997, 4, 294-303.	11.2	6
140	New agents for AML and MDS. Best Practice and Research in Clinical Haematology, 2009, 22, 501-507.	1.7	6
141	Phase 1 study of belinostat (PXD-101) and bortezomib (Velcade, PS-341) in patients with relapsed or refractory acute leukemia and myelodysplastic syndrome. Leukemia and Lymphoma, 2021, 62, 1187-1194.	1.3	6
142	Targeting Waldenstrom macroglobulinemia with histone deacetylase inhibitors. Leukemia and Lymphoma, 2011, 52, 1623-1625.	1.3	5
143	Phase I Trial of Vorinostat (SAHA) in Combination with Alvocidib (Flavopiridol) in Patients with Relapsed, Refractory or (Selected) Poor Prognosis Acute Leukemia or Refractory Anemia with Excess Blasts-2 (RAEB-2). Blood, 2008, 112, 2986-2986.	1.4	5
144	Phase I Trial Of Carfilzomib In Combination With Vorinostat (SAHA) In Patients With Relapsed/Refractory B-Cell Lymphomas. Blood, 2013, 122, 4375-4375.	1.4	5

#	Article	IF	CITATIONS
145	Combining proteasome with cell cycle inhibitors: a dual attack potentially applicable to multiple hematopoietic malignancies. Expert Review of Hematology, 2011, 4, 483-486.	2.2	4
146	Atg7 in AML: a double-edged sword?. Blood, 2016, 128, 1163-1165.	1.4	4
147	Mechanisms underlying synergism between circularized tumor necrosis factorâ€related apoptosis inducing ligand and bortezomib in bortezomibâ€sensitive or â€resistant myeloma cells. Hematological Oncology, 2022, 40, 999-1008.	1.7	4
148	HDAC inhibitors repress the polycomb protein BMI1. Cell Cycle, 2010, 9, 2722-2730.	2.6	3
149	Complementary combinations: what treatments will become key to the battle against acute myelogenous leukemia?. Expert Review of Hematology, 2012, 5, 475-478.	2.2	3
150	Vorinostat Synergistically Potentiates MK-0457 Lethality in Chronic Myelogenous Leukemia (CML) Cells Sensitive and Resistant to Imatinib Mesylate Blood, 2007, 110, 1041-1041.	1.4	3
151	Targeting CDK9 Dramatically Potentiates ABT-737-Induced Apoptosis in Human Multiple Myeloma Cells through a Bim-Dependent Mechanism Blood, 2009, 114, 297-297.	1.4	3
152	Chk1 Inhibition Potently Blocks STAT3 Tyrosine705 Phosphorylation, DNA-Binding Activity, and Activation of Downstream Targets in Human Multiple Myeloma Cells. Molecular Cancer Research, 2022, 20, 456-467.	3.4	3
153	Nonlinear response surface in the study of interaction analysis of three combination drugs. Biometrical Journal, 2017, 59, 9-24.	1.0	2
154	Targeting cereblon in AML. Blood, 2021, 137, 584-586.	1.4	2
155	Targeting Mantle Cell Lymphoma with a Strategy of Combined Proteasome and Histone Deacetylase Inhibition. Resistance To Targeted Anti-cancer Therapeutics, 2014, , 149-179.	0.1	2
156	A chicken-or-egg conundrum in apoptosis: which comes first? Ceramide or PKCÎ?. Journal of Clinical Investigation, 2002, 109, 717-719.	8.2	2
157	Variable effects of tamoxifen on human hematopoietic progenitor cell growth and sensitivity to doxorubicin. Cancer Chemotherapy and Pharmacology, 1994, 33, 509-514.	2.3	1
158	Selectively killing transformed cells through proteasome inhibition. Cell Cycle, 2009, 8, 3073-3077.	2.6	1
159	R-spondin(g) to syndecan-1 in myeloma. Blood, 2018, 131, 946-947.	1.4	1
160	Co-Administration of the mTORC1/TORC2 Inhibitor INK128 and the Bcl-2/Bcl-XI Antagonist ABT-737 Kills Human Myeloid Leukemia Cells through Mcl-1 Down-Regulation and AKT Inactivation. Blood, 2015, 126, 3676-3676.	1.4	1
161	Histone deacetylase inhibitors in clinical development. Expert Opinion on Investigational Drugs, 2004, 13, 21-38.	4.1	1
162	Activation of MAP Kinase Pathways by TRAIL: Don't Expect the Obvious. Cancer Biology and Therapy, 2004, 3, 302-304.	3.4	0