
Patrice A Salomé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9313531/publications.pdf Version: 2024-02-01

PATRICE & SALOMÃO

#	Article	IF	CITATIONS
1	The circadian clock reaches vernalization: How CCA1 and LHY induce <i>VIN3</i> transcription during winter. Plant Cell, 2022, 34, 951-952.	6.6	0
2	Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nature Genetics, 2022, 54, 705-714.	21.4	42
3	Co-expression networks in Chlamydomonas reveal significant rhythmicity in batch cultures and empower gene function discovery. Plant Cell, 2021, 33, 1058-1082.	6.6	31
4	Single-cell RNA sequencing of batch Chlamydomonas cultures reveals heterogeneity in their diurnal cycle phase. Plant Cell, 2021, 33, 1042-1057.	6.6	29
5	I was there first: competitive binding sets vascular meristem size. Plant Cell, 2021, 33, 2513-2514.	6.6	0
6	Build it, and they will shine: generating fluorescent sensors for H2O2 in a unicellular alga. Plant Cell, 2021, 33, 2902-2903.	6.6	0
7	A bunch of bric-Ã-brac (Curios) no more: on the importance of BTF proteins in mutually assured destruction in blue light. Plant Cell, 2021, 33, 3602-3603.	6.6	0
8	Erratum for: Build it, and they will shine: generating fluorescent sensors for H2O2 in a unicellular alga. Plant Cell, 2021, , .	6.6	0
9	Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1069-1080.	7.1	68
10	The Shape of Rings to Come: Systems Approach to Xylem and Phloem Formation in Arabidopsis. Plant Cell, 2020, 32, 287-288.	6.6	0
11	Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32739-32749.	7.1	30
12	How to Eat One's Feelings: Autophagy and Phosphatidylinositol 3-Phosphate. Plant Cell, 2020, 32, 3656-3657.	6.6	0
13	Plant (RNA) Editors: Testing for Conservation in RNA Editing in Moss and Angiosperms. Plant Cell, 2020, 32, 2681-2682.	6.6	1
14	A Roadmap toward Large-Scale Genome Editing in Crops. Plant Cell, 2020, 32, 1340-1341.	6.6	1
15	Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. Journal of Biological Chemistry, 2019, 294, 17626-17641.	3.4	53
16	Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2374-2383.	7.1	133
17	The Shade of Things to Come: Plastid Retrograde Signaling and Shade Avoidance. Plant Cell, 2019, 31, 275-275.	6.6	1
18	Mediator Skills: MED16 Controls Endoreduplication. Plant Cell, 2019, 31, 1681-1681.	6.6	1

PATRICE A SALOMé

#	Article	IF	CITATIONS
19	Reverse Genetics of IRT1, or How to Catch an Iron Transporter and Pin It Down. Plant Cell, 2019, 31, 1200-1201.	6.6	1
20	A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. Plant Cell, 2019, 31, 1682-1707.	6.6	169
21	Too Close to the Flame: Duplicated ICARUS Genes and Growth at Higher Temperatures. Plant Cell, 2019, 31, 1216-1217.	6.6	Ο
22	Plants on (Brassino)steroids: Degradation of the Transcription Factor BZR1 by the E3 Ubiquitin Ligase PUB40. Plant Cell, 2019, 31, 757-758.	6.6	0
23	In the Pale Red Light: Control of Pre-mRNA Splicing by RRC1 and SFPS. Plant Cell, 2019, 31, 1940-1940.	6.6	0
24	Barreling Down the Chloroplast Highway: Protein Sorting of Outer-Membrane β-Barrel Proteins. Plant Cell, 2019, 31, 1679-1680.	6.6	0
25	It's a TRAP: Deciphering Responses to Hypoxia from Transcription to mRNA Translation. Plant Cell, 2019, 31, tpc.00730.2019.	6.6	0
26	Sabeeha Merchant. Plant Cell, 2019, 31, 2814-2816.	6.6	0
27	Developmental Timing is Everything (Part II): Gating of High Temperature Responses by the Circadian Clock. Plant Cell, 2019, 31, 2281-2282.	6.6	0
28	Developmental Timing Is Everything: TZP and Phytochrome Signaling. Plant Cell, 2018, 30, 741-742.	6.6	0
29	Hold Me Closer: Meiotic Crossover Formation and FANCD2. Plant Cell, 2018, 30, 269-270.	6.6	0
30	Don't Go Grocery Shopping When Hungry! Systemic Signaling in Zinc Homeostasis. Plant Cell, 2018, 30, 2236-2237.	6.6	0
31	Divide and Conquer: High-Throughput Screening of Chlamydomonas Cell Cycle Mutants. Plant Cell, 2018, 30, 1167-1168.	6.6	0
32	In situ architecture of the algal nuclear pore complex. Nature Communications, 2018, 9, 2361.	12.8	107
33	easyGWAS: A Cloud-Based Platform for Comparing the Results of Genome-Wide Association Studies. Plant Cell, 2017, 29, 5-19.	6.6	98
34	Proliferate at Your Own Risk: Ribosomal Stress and Regeneration. Plant Cell, 2017, 29, 2318-2318.	6.6	1
35	Some Like It HOT: Protein Translation and Heat Stress in Plants. Plant Cell, 2017, 29, 2075-2075.	6.6	3
36	Know Your Histone (Zip) Code: Flowering Time and Phosphorylation of Histone H2A on Serine 95. Plant Cell, 2017, 29, 2084-2085.	6.6	1

PATRICE A SALOMé

#	Article	IF	CITATIONS
37	SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7018-E7027.	7.1	61
38	Life's a Gas under Pressure: Ethylene and Etioplast Maintenance in Germinating Seedlings. Plant Cell, 2017, 29, 2951-2952.	6.6	1
39	This ICE/SCRM Melts in the Dark: Light-Dependent COP1-Mediated Protein Degradation in Stomatal Formation. Plant Cell, 2017, 29, 2680-2681.	6.6	2
40	In the Heat of the Moment: ZTL-Mediated Protein Quality Control at High Temperatures. Plant Cell, 2017, 29, 2685-2686.	6.6	0
41	Manganese Is a Plant's Best Friend: Intracellular Mn Transport by the Transporter NRAMP2. Plant Cell, 2017, 29, 2953-2954.	6.6	0
42	Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell, 2016, 166, 492-505.	28.9	594
43	1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016, 166, 481-491.	28.9	1,107
44	Plant Genetic Archaeology: Whole-Genome Sequencing Reveals the Pedigree of a Classical Trisomic Line. G3: Genes, Genomes, Genetics, 2015, 5, 253-259.	1.8	3
45	Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science, 2015, 350, 450-454.	12.6	171
46	Circadian Life Without Micronutrients: Effects of Altered Micronutrient Supply on Clock Function in Arabidopsis. Methods in Molecular Biology, 2014, 1158, 227-238.	0.9	5
47	User guide for mapping-by-sequencing in Arabidopsis. Genome Biology, 2013, 14, R61.	8.8	138
48	Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. EMBO Journal, 2012, 32, 511-523.	7.8	96
49	The recombination landscape in Arabidopsis thaliana F2 populations. Heredity, 2012, 108, 447-455.	2.6	155
50	Genetic Architecture of Flowering-Time Variation in <i>Arabidopsis thaliana</i> . Genetics, 2011, 188, 421-433.	2.9	160
51	The Role of the <i>Arabidopsis</i> Morning Loop Components CCA1, LHY, PRR7, and PRR9 in Temperature Compensation. Plant Cell, 2010, 22, 3650-3661.	6.6	155
52	Characterization of Pseudo-Response Regulators in Plants. Methods in Enzymology, 2010, 471, 357-378.	1.0	10
53	<i>Arabidopsis</i> Photorespiratory Serine Hydroxymethyltransferase Activity Requires the Mitochondrial Accumulation of Ferredoxin-Dependent Glutamate Synthase. Plant Cell, 2009, 21, 595-606.	6.6	78
54	Circadian Timekeeping during Early Arabidopsis Development Â. Plant Physiology, 2008, 147, 1110-1125.	4.8	60

Patrice A Salomé

#	Article	IF	CITATIONS
55	Post-translational Regulation of the Arabidopsis Circadian Clock through Selective Proteolysis and Phosphorylation of Pseudo-response Regulator Proteins. Journal of Biological Chemistry, 2008, 283, 23073-23083.	3.4	209
56	What makes the Arabidopsis clock tick on time? A review on entrainment. Plant, Cell and Environment, 2005, 28, 21-38.	5.7	94
57	Circadian Control of Messenger RNA Stability. Association with a Sequence-Specific Messenger RNA Decay Pathway. Plant Physiology, 2005, 138, 2374-2385.	4.8	98
58	PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis Circadian Clock. Plant Cell, 2005, 17, 791-803.	6.6	291
59	Arabidopsis Response Regulators ARR3 and ARR4 Play Cytokinin-Independent Roles in the Control of Circadian Period. Plant Cell, 2005, 18, 55-69.	6.6	133
60	SPINDLY and GIGANTEA Interact and Act in Arabidopsis thaliana Pathways Involved in Light Responses, Flowering, and Rhythms in Cotyledon Movements. Plant Cell, 2004, 16, 1550-1563.	6.6	179
61	The Arabidopsis thaliana Clock. Journal of Biological Rhythms, 2004, 19, 425-435.	2.6	106
62	Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6878-6883.	7.1	143
63	Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock. Science, 2003, 302, 1049-1053.	12.6	411
64	The out of phase 1 Mutant Defines a Role for PHYB in Circadian Phase Control in Arabidopsis. Plant Physiology, 2002, 129, 1674-1685.	4.8	99
65	The Arabidopsis Circadian System. The Arabidopsis Book, 2002, 1, e0044.	0.5	21
66	Integrated Temporal Regulation of the Photorespiratory Pathway. Circadian Regulation of Two Arabidopsis Genes Encoding Serine Hydroxymethyltransferase. Plant Physiology, 2000, 123, 381-392.	4.8	107
67	Imbibition, but Not Release from Stratification, Sets the Circadian Clock in Arabidopsis Seedlings. Plant Cell, 1998, 10, 2005-2017.	6.6	56
68	Imbibition, but Not Release from Stratification, Sets the Circadian Clock in Arabidopsis Seedlings. Plant Cell, 1998, 10, 2005.	6.6	2