Fethi Kooli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9313352/publications.pdf Version: 2024-02-01

FETHLKOOLL

#	Article	IF	CITATIONS
1	Reusable Catalyst of KF/Mg-Al Layered Double for Biodiesel Conversion and Optimization using Bohn-Behnken Design. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 497-507.	0.5	0
2	Highly Efficient Methylene Blue Dye Removal by Nickel Molybdate Nanosorbent. Molecules, 2021, 26, 1378.	1.7	11
3	Al and Zr Porous Clay Heterostructures as Removal Agents of Basic Blue-41 Dye from an Artificially Polluted Solution: Regeneration Properties and Batch Design. Materials, 2021, 14, 2528.	1.3	6
4	Tandem dual bed Mo/HZSM-5 and Mo/HMCM-22 catalysts with enhanced catalytic performance for natural gas conversion to aromatics. Catalysis Today, 2020, 357, 392-398.	2.2	3
5	Iron Molybdate Fe2(MoO4)3 Nanoparticles: Efficient Sorbent for Methylene Blue Dye Removal from Aqueous Solutions. Molecules, 2020, 25, 5100.	1.7	5
6	Removal Efficiency of Basic Blue 41 by Three Zeolites Prepared from Natural Jordanian Kaolin. Clays and Clay Minerals, 2019, 67, 143-153.	0.6	16
7	Eosin Removal by Cetyl Trimethylammonium-Cloisites: Influence of the Surfactant Solution Type and Regeneration Properties. Molecules, 2019, 24, 3015.	1.7	2
8	Waste Bricks Applied as Removal Agent of Basic Blue 41 from Aqueous Solutions: Base Treatment and Their Regeneration Efficiency. Applied Sciences (Switzerland), 2019, 9, 1237.	1.3	16
9	Application of Organo-Magadiites for the Removal of Eosin Dye from Aqueous Solutions: Thermal Treatment and Regeneration. Molecules, 2018, 23, 2280.	1.7	13
10	Removal Properties of Anionic Dye Eosin by Cetyltrimethylammonium Organo-Clays: The Effect of Counter-Ions and Regeneration Studies. Molecules, 2018, 23, 2364.	1.7	10
11	Molybdenum Trioxide: Efficient Nanosorbent for Removal of Methylene Blue Dye from Aqueous Solutions. Molecules, 2018, 23, 2295.	1.7	35
12	Modified Nigella Sativa Seeds as a Novel Efficient Natural Adsorbent for Removal of Methylene Blue Dye. Molecules, 2018, 23, 1950.	1.7	14
13	Preparation and catalytic activities of porous clay heterostructures from aluminium-intercalated clays: effect of Al content. Clay Minerals, 2017, 52, 521-535.	0.2	9
14	A novel synthetic route to obtain RUB-15 phase by pseudo solid-state conversion. Microporous and Mesoporous Materials, 2016, 228, 116-122.	2.2	2
15	Factors that affect the thermal stability and properties of Zr-porous clay heterostructures. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1143-1155.	2.0	5
16	Conversion of protonic magadiite to PLS-1 zeolite: thermal stability and acidity. Clay Minerals, 2016, 51, 781-791.	0.2	1
17	Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillaredÂderivatives. Microporous and Mesoporous Materials, 2016, 226, 482-492.	2.2	37
18	Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Applied Clay Science, 2015, 116-117, 23-30.	2.6	53

Fethi Kooli

#	Article	IF	CITATIONS
19	Removal enhancement of basic blue 41 by brick waste from an aqueous solution. Arabian Journal of Chemistry, 2015, 8, 333-342.	2.3	49
20	Eosin Removal Properties of Organo-local Clay from Aqueous Solution. Oriental Journal of Chemistry, 2014, 30, 675-680.	0.1	9
21	Porous clay heterostructures (PCHs) from Al13-intercalated and Al13-pillared montmorillonites: Properties and heptane hydro-isomerization catalytic activity. Microporous and Mesoporous Materials, 2014, 184, 184-192.	2.2	26
22	Chemical and thermal properties of organoclays derived from highly stable bentonite in sulfuric acid. Applied Clay Science, 2013, 83-84, 349-356.	2.6	21
23	Pillared montmorillontes from unusual antiperspirant aqueous solutions: Characterization and catalytic tests. Microporous and Mesoporous Materials, 2013, 167, 228-236.	2.2	17
24	Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis. Thermochimica Acta, 2013, 551, 7-13.	1.2	17
25	Thermal stability investigation of organo-acid-activated clays by TG-MS and in situ XRD techniques. Thermochimica Acta, 2009, 486, 71-76.	1.2	20
26	Thermal Stable Cetyltrimethylammoniumâ î'Magadiites: Influence of the Surfactant Solution Type. Journal of Physical Chemistry C, 2009, 113, 1947-1952.	1.5	26
27	Exfoliation Properties of Acid-Activated Montmorillonites and Their Resulting Organoclays. Langmuir, 2009, 25, 724-730.	1.6	40
28	Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Applied Clay Science, 2009, 43, 357-363.	2.6	44
29	Effect of pillared clays on the hydroisomerization of n-heptane. Catalysis Today, 2008, 131, 244-249.	2.2	9
30	Solvent-Free Synthesis and Crystal Structure of 9,10-Dihydro-9,10-diphenylanthracene-2,3,6,7-tetraol Inclusion Compounds. Molecular Crystals and Liquid Crystals, 2007, 473, 59-66.	0.4	1
31	Synthesis and Supramolecularity of C-Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Molecular Crystals and Liquid Crystals, 2007, 474, 89-110.	0.4	12
32	Effect of the acid-activated clays on the properties of porous clay heterostructures. Journal of Porous Materials, 2006, 13, 319-324.	1.3	41
33	Zeolite beta catalysts for n-C7 hydroisomerization. Journal of Porous Materials, 2006, 13, 359-364.	1.3	29
34	Effect of the Acid Activation Levels of Montmorillonite Clay on the Cetyltrimethylammonium Cations Adsorption. Langmuir, 2005, 21, 8717-8723.	1.6	58
35	Waste products from the phosphate industry as efficient removal of Acid Red 88 dye from aqueous solution: their regeneration uses and batch design adsorber. , 0, 202, 410-419.		11