
Shin Fukui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9313210/publications.pdf Version: 2024-02-01

SHIN FURIL

#	Article	IF	CITATIONS
1	Modeling the effect of rainfall changes to predict population dynamics of the Asian tiger mosquito Aedes albopictus under future climate conditions. PLoS ONE, 2022, 17, e0268211.	2.5	6
2	Applicability of meteorological ensemble forecasting to predict summer cold damage in rice growth. J Agricultural Meteorology, 2020, 76, 128-139.	1.5	2
3	Regulated Body-Sharing Virtual Trips for Pleasure and Business. Lecture Notes in Computer Science, 2020, , 267-279.	1.3	0
4	Estimating first-grade rice production due to high temperature after heading date utilizing the statistical data. J Agricultural Meteorology, 2019, 75, 217-224.	1.5	1
5	Asymmetric public goods game cooperation through pest control. Journal of Theoretical Biology, 2017, 435, 238-247.	1.7	10
6	Population of the temperate mosquito, <i>Culex pipiens</i> , decreases in response to habitat climatological changes in future. GeoHealth, 2017, 1, 196-210.	4.0	6
7	Taking account of water temperature effects on phenology improves the estimation of rice heading dates: Evidence from 758 field observations across Japan. J Agricultural Meteorology, 2017, 73, 84-91.	1.5	5
8	Large-scale evaluation of the effects of adaptation to climate change by shifting transplanting date on rice production and quality in Japan. J Agricultural Meteorology, 2017, 73, 156-173.	1.5	25
9	A methodology for estimating phenological parameters of rice cultivars utilizing data from common variety trials. J Agricultural Meteorology, 2015, 71, 77-89.	1.5	22
10	Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan. Climate Research, 2015, 64, 275-290.	1.1	18
11	Spatial Niche Facilitates Clonal Reproduction in Seed Plants under Temporal Disturbance. PLoS ONE, 2014, 9, e116111.	2.5	10
12	Evolution of symbiosis with resource allocation from fecundity to survival. Die Naturwissenschaften, 2014, 101, 437-446.	1.6	3
13	Consumers can enhance ecosystem productivity and stability in changing environments. Population Ecology, 2012, 54, 177-186.	1.2	2
14	Evolution of situation-dependent mutualism. Journal of Plant Interactions, 2011, 6, 179-180.	2.1	0
15	Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14251-14256.	7.1	130
16	Endosymbiosis as a compact ecosystem with material cycling: Parasitism or mutualism?. Journal of Theoretical Biology, 2007, 246, 746-754.	1.7	0