
Roza M Umarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9312925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cognitive Status Predicts Return to Functional Independence After Minor Stroke: A Decision Tree Analysis. Frontiers in Neurology, 2022, 13, 833020.	1.1	2
2	Diagnostic Accuracy of High-Resolution 3D T2-SPACE in Detecting Cerebral Venous Sinus Thrombosis. American Journal of Neuroradiology, 2022, 43, 881-886.	1.2	5
3	Association of diabetes mellitus and admission glucose levels with outcome after endovascular therapy in acute ischaemic stroke in anterior circulation. European Journal of Neurology, 2022, 29, 2996-3008.	1.7	6
4	Association of cognitive reserve with stroke outcome: a protocol for a systematic review. BMJ Open, 2022, 12, e059378.	0.8	1
5	Interaction between cognitive reserve and age moderates effect of lesion load on stroke outcome. Scientific Reports, 2021, 11, 4478.	1.6	20
6	Indirect connectome-based prediction of post-stroke deficits: prospects and limitations. Brain, 2020, 143, 1966-1970.	3.7	10
7	Dissociation of visual extinction and neglect in the left hemisphere. Cortex, 2020, 129, 211-222.	1.1	7
8	Cognitive reserve impacts on disability and cognitive deficits in acute stroke. Journal of Neurology, 2019, 266, 2495-2504.	1.8	51
9	Neural correlates of acute apraxia: Evidence from lesion data and functional MRI in stroke patients. Cortex, 2019, 120, 1-21.	1.1	8
10	Dissociating frontal and temporal correlates of phonological and semantic fluency in a large sample of left hemisphere stroke patients. NeuroImage: Clinical, 2019, 23, 101840.	1.4	43
11	Reference Data for Polysomnography-Measured and Subjective Sleep in Healthy Adults. Journal of Clinical Sleep Medicine, 2018, 14, 523-532.	1.4	61
12	Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: Implications for understanding neglect. Cortex, 2017, 97, 327-338.	1.1	54
13	Distinct white matter alterations following severe stroke. Neurology, 2017, 88, 1546-1555.	1.5	40
14	Visual neglect after left-hemispheric lesions: a voxel-based lesion–symptom mapping study in 121 acute stroke patients. Experimental Brain Research, 2017, 235, 83-95.	0.7	38
15	Predictors and signatures of recovery from neglect in acute stroke. Annals of Neurology, 2016, 79, 673-686.	2.8	55
16	Differential Roles of Ventral and Dorsal Streams for Conceptual and Production-Related Components of Tool Use in Acute Stroke Patients. Cerebral Cortex, 2016, 26, 3754-3771.	1.6	59
17	A single dual-stream framework for syntactic computations in music and language. NeuroImage, 2015, 117, 267-283.	2.1	63
18	The ventral fiber pathway for pantomime of object use. NeuroImage, 2015, 106, 252-263.	2.1	70

Roza M Umarova

#	Article	IF	CITATIONS
19	Predicting Planning Performance from Structural Connectivity Between Left and Right Mid-Dorsolateral Prefrontal Cortex: Moderating Effects of Age During Postadolescence and Midadulthood. Cerebral Cortex, 2015, 25, 869-883.	1.6	20
20	Processing of bilateral versus unilateral conditions: Evidence for the functional contribution of the ventral attention network. Cortex, 2015, 66, 91-102.	1.1	17
21	"l know your name, but not your number―– Patients with verbal short-term memory deficits are impaired in learning sequences of digits. Neuropsychologia, 2015, 72, 80-86.	0.7	11
22	Fiber pathways connecting cortical areas relevant for spatial orienting and exploration. Human Brain Mapping, 2014, 35, 1031-1043.	1.9	31
23	Attentionâ€network specific alterations of structural connectivity in the undamaged white matter in acute neglect. Human Brain Mapping, 2014, 35, 4678-4692.	1.9	40
24	Fiber density estimation from single q-shell diffusion imaging by tensor divergence. Neurolmage, 2013, 77, 166-176.	2.1	15
25	Ventral and dorsal fiber systems for imagined and executed movement. Experimental Brain Research, 2012, 219, 203-216.	0.7	64
26	Acute visual neglect and extinction: distinct functional state of the visuospatial attention system. Brain, 2011, 134, 3310-3325.	3.7	85
27	Learning postural tasks in hemiparetic patients with lesions of left versus right hemisphere. Experimental Brain Research, 2010, 201, 753-761.	0.7	12
28	Structural Connectivity for Visuospatial Attention: Significance of Ventral Pathways. Cerebral Cortex, 2010, 20, 121-129.	1.6	155
29	The visuospatial attention in acute stroke patients with and without neglect. NeuroImage, 2009, 47, S66.	2.1	0
30	Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18035-18040.	3.3	1,306