
Shoji Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/931255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nature Materials, 2013, 12, 584-590.	27.5	725
2	Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Advanced Materials, 2007, 19, 2696-2701.	21.0	546
3	A trap-and-release integrated microfluidic system for dynamic microarray applications. Proceedings of the United States of America, 2007, 104, 1146-1151.	7.1	536
4	Biofabrication: reappraising the definition of an evolving field. Biofabrication, 2016, 8, 013001.	7.1	523
5	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	48.7	502
6	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	9.3	465
7	Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis. Analytical Chemistry, 2006, 78, 8169-8174.	6.5	443
8	Highly coupled ATP synthesis by F1-ATPase single molecules. Nature, 2005, 433, 773-777.	27.8	380
9	Parylene flexible neural probes integrated with microfluidic channels. Lab on A Chip, 2005, 5, 519.	6.0	345
10	An Axisymmetric Flow-Focusing Microfluidic Device. Advanced Materials, 2005, 17, 1067-1072.	21.0	335
11	Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnology, 2005, 23, 361-365.	17.5	332
12	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	7.1	291
13	Molding Cell Beads for Rapid Construction of Macroscopic 3D Tissue Architecture. Advanced Materials, 2011, 23, H90-4.	21.0	275
14	Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13399-13403.	7.1	257
15	Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17894-17898.	7.1	251
16	3D flexible multichannel neural probe array. Journal of Micromechanics and Microengineering, 2004, 14, 104-107.	2.6	210
17	Skin integrated with perfusable vascular channels on a chip. Biomaterials, 2017, 116, 48-56.	11.4	203
18	Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force. PLoS ONE, 2012, 7, e51085.	2.5	197

#	Article	IF	CITATIONS
19	Controlled Synthesis of 3D Multiâ€Compartmental Particles with Centrifugeâ€Based Microdroplet Formation from a Multiâ€Barrelled Capillary. Advanced Materials, 2012, 24, 1340-1346.	21.0	188
20	Rapid Detection of a Cocaine-Binding Aptamer Using Biological Nanopores on a Chip. Journal of the American Chemical Society, 2011, 133, 8474-8477.	13.7	187
21	Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Science Robotics, 2018, 3, .	17.6	170
22	Encapsulating Bacteria in Agarose Microparticles Using Microfluidics for High-Throughput Cell Analysis and Isolation. ACS Chemical Biology, 2011, 6, 260-266.	3.4	166
23	Formation of Giant Lipid Vesiclelike Compartments from a Planar Lipid Membrane by a Pulsed Jet Flow. Journal of the American Chemical Society, 2007, 129, 12608-12609.	13.7	162
24	Three-dimensional neuron–muscle constructs with neuromuscular junctions. Biomaterials, 2013, 34, 9413-9419.	11.4	162
25	Microfluidic Formation of Monodisperse, Cellâ€Sized, and Unilamellar Vesicles. Angewandte Chemie - International Edition, 2009, 48, 6533-6537.	13.8	154
26	Controlling the Shape of Filamentous Cells of Escherichia coli. Nano Letters, 2005, 5, 1819-1823.	9.1	149
27	Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nature Communications, 2015, 6, 8871.	12.8	136
28	Cell-laden microfibers for bottom-up tissue engineering. Drug Discovery Today, 2015, 20, 236-246.	6.4	130
29	Automated Parallel Recordings of Topologically Identified Single Ion Channels. Scientific Reports, 2013, 3, 1995.	3.3	123
30	Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nature Chemistry, 2016, 8, 881-889.	13.6	119
31	Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15340-15344.	7.1	116
32	Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab on A Chip, 2010, 10, 2741.	6.0	116
33	Biomolecular-Motor-Based Nano- or Microscale Particle Translocations on DNA Microarrays. Nano Letters, 2009, 9, 2407-2413.	9.1	112
34	Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2018, 2, 040901.	6.2	110
35	Multichannel Simultaneous Measurements of Single-Molecule Translocation in α-Hemolysin Nanopore Array. Analytical Chemistry, 2009, 81, 9866-9870.	6.5	103
36	Parylene-coating in PDMS microfluidic channels prevents the absorption of fluorescent dyes. Sensors and Actuators B: Chemical, 2010, 150, 478-482.	7.8	102

#	Article	IF	CITATIONS
37	Lipid Bilayer Microarray for Parallel Recording of Transmembrane Ion Currents. Analytical Chemistry, 2008, 80, 328-332.	6.5	101
38	Fabrication of Flexible Neural Probes With Built-In Microfluidic Channels by Thermal Bonding of Parylene. Journal of Microelectromechanical Systems, 2006, 15, 1477-1482.	2.5	100
39	Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab on A Chip, 2008, 8, 259-266.	6.0	99
40	Towards Smart Tattoos: Implantable Biosensors for Continuous Glucose Monitoring. Advanced Healthcare Materials, 2013, 2, 43-56.	7.6	99
41	Artificial Cell Membrane Systems for Biosensing Applications. Analytical Chemistry, 2017, 89, 216-231.	6.5	97
42	Highly Reproducible Method of Planar Lipid Bilayer Reconstitution in Polymethyl Methacrylate Microfluidic Chip. Langmuir, 2006, 22, 1937-1942.	3.5	94
43	Monodisperse Cell-Encapsulating Peptide Microgel Beads for 3D Cell Culture. Langmuir, 2010, 26, 2645-2649.	3.5	92
44	Metal-Organic Cuboctahedra for Synthetic Ion Channels with Multiple Conductance States. CheM, 2017, 2, 393-403.	11.7	89
45	Planar lipid bilayer reconstitution with a micro-fluidic system. Lab on A Chip, 2004, 4, 502.	6.0	85
46	Unidirectional Transport of Kinesin-Coated Beads on Microtubules Oriented in a Microfluidic Device. Nano Letters, 2004, 4, 2265-2270.	9.1	83
47	Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomedical Microdevices, 2009, 11, 369-377.	2.8	83
48	Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. Npj Science of Food, 2021, 5, 6.	5.5	81
49	A neurospheroid network-stamping method for neural transplantation to the brain. Biomaterials, 2010, 31, 8939-8945.	11.4	78
50	A Microfluidic Device for Electrofusion of Biological Vesicles. Biomedical Microdevices, 2004, 6, 213-218.	2.8	77
51	A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. Journal of Micromechanics and Microengineering, 2006, 16, 2336-2344.	2.6	76
52	Millimeter‧ized Neural Building Blocks for 3D Heterogeneous Neural Network Assembly. Advanced Healthcare Materials, 2013, 2, 1564-1570.	7.6	76
53	Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology, 2015, 10, 423-428.	31.5	75
54	A Polymerâ€Based Nanoporeâ€Integrated Microfluidic Device for Generating Stable Bilayer Lipid Membranes, Small, 2010, 6, 2100-2104.	10.0	74

4

#	Article	IF	CITATIONS
55	A three-dimensional shape memory alloy microelectrode with clipping structure for insect neural recording. Journal of Microelectromechanical Systems, 2000, 9, 24-31.	2.5	73
56	Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab on A Chip, 2009, 9, 2217.	6.0	73
57	Timing controllable electrofusion device for aqueous droplet-based microreactors. Lab on A Chip, 2006, 6, 757.	6.0	70
58	Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS. Nature Communications, 2015, 6, 8021.	12.8	67
59	Giant liposome formation toward the synthesis of well-defined artificial cells. Journal of Materials Chemistry B, 2017, 5, 5911-5923.	5.8	65
60	Utilization of Cell-Sized Lipid Containers for Nanostructure and Macromolecule Handling in Microfabricated Devices. Analytical Chemistry, 2005, 77, 2795-2801.	6.5	64
61	A dynamic microarray device for paired bead-based analysis. Lab on A Chip, 2010, 10, 2443.	6.0	64
62	Electroformation of giant liposomes in microfluidic channels. Measurement Science and Technology, 2006, 17, 3121-3126.	2.6	63
63	Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly. Advanced Drug Delivery Reviews, 2015, 95, 29-39.	13.7	63
64	Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip. Biosensors and Bioelectronics, 2007, 22, 1111-1115.	10.1	60
65	Chemical Vapor Detection Using a Reconstituted Insect Olfactory Receptor Complex. Angewandte Chemie - International Edition, 2014, 53, 11798-11802.	13.8	60
66	A Radio-Telemetry System With a Shape Memory Alloy Microelectrode for Neural Recording of Freely Moving Insects. IEEE Transactions on Biomedical Engineering, 2004, 51, 133-137.	4.2	59
67	Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology. PLoS ONE, 2015, 10, e0119010.	2.5	59
68	Hybrid Nanotransport System by Biomolecular Linear Motors. Journal of Microelectromechanical Systems, 2004, 13, 612-619.	2.5	58
69	Droplet microfluidics for the study of artificial cells. Analytical and Bioanalytical Chemistry, 2011, 400, 1705-1716.	3.7	58
70	Preparation of structurally colored, monodisperse spherical assemblies composed of black and white colloidal particles using a micro-flow-focusing device. Journal of Materials Chemistry C, 2015, 3, 769-777.	5.5	58
71	Formation of liquid rope coils in a coaxial microfluidic device. RSC Advances, 2015, 5, 33691-33695.	3.6	57
72	Meter‣ong and Robust Supramolecular Strands Encapsulated in Hydrogel Jackets. Angewandte Chemie - International Edition, 2012, 51, 1553-1557.	13.8	55

#	Article	IF	CITATIONS
73	Microfluidic Control of the Internal Morphology in Nanofiberâ€Based Macroscopic Cables. Angewandte Chemie - International Edition, 2012, 51, 7942-7947.	13.8	53
74	Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials, 2013, 34, 2421-2427.	11.4	53
75	Membrane protein-based biosensors. Journal of the Royal Society Interface, 2018, 15, 20170952.	3.4	53
76	Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab on A Chip, 2016, 16, 2295-2301.	6.0	52
77	Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air. APL Bioengineering, 2020, 4, 026101.	6.2	51
78	Droplet Split-and-Contact Method for High-Throughput Transmembrane Electrical Recording. Analytical Chemistry, 2013, 85, 10913-10919.	6.5	49
79	Three-dimensional cell culture based on microfluidic techniques to mimic living tissues. Biomaterials Science, 2013, 1, 257-264.	5.4	47
80	Microtechnologies for membrane protein studies. Analytical and Bioanalytical Chemistry, 2008, 391, 2695-2702.	3.7	46
81	Microfluidic lipid membrane formation on microchamber arrays. Lab on A Chip, 2011, 11, 2485.	6.0	46
82	Pesticide vapor sensing using an aptamer, nanopore, and agarose gel on a chip. Lab on A Chip, 2017, 17, 2421-2425.	6.0	46
83	Construction of a Biohybrid Odorant Sensor Using Biological Olfactory Receptors Embedded into Bilayer Lipid Membrane on a Chip. ACS Sensors, 2019, 4, 711-716.	7.8	46
84	Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber. Biomedical Microdevices, 2008, 10, 539-546.	2.8	45
85	Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel. Nanotechnology, 2006, 17, 289-294.	2.6	44
86	A Portable Lipid Bilayer System for Environmental Sensing with a Transmembrane Protein. PLoS ONE, 2014, 9, e102427.	2.5	43
87	pH-Induced Motion Control of Self-Propelled Oil Droplets Using a Hydrolyzable Gemini Cationic Surfactant. Langmuir, 2014, 30, 7977-7985.	3.5	42
88	Bottom-up biofabrication using microfluidic techniques. Biofabrication, 2018, 10, 044103.	7.1	42
89	Perfusable and stretchable 3D culture system for skin-equivalent. Biofabrication, 2019, 11, 011001.	7.1	42
90	Highly sensitive VOC detectors using insect olfactory receptors reconstituted into lipid bilayers. Science Advances, 2021, 7, .	10.3	42

#	Article	IF	CITATIONS
91	Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds. Pancreatology, 2016, 16, 922-930.	1.1	41
92	Liquid Cell Electron Microscopy of Nanoparticle Self-Assembly Driven by Solvent Drying. Journal of Physical Chemistry Letters, 2017, 8, 647-654.	4.6	41
93	Micro patterning of active proteins with perforated PDMS sheets (PDMS sieve). Lab on A Chip, 2004, 4, 333.	6.0	40
94	Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography. Biomedical Microdevices, 2009, 11, 17-22.	2.8	40
95	Droplet-based lipid bilayer system integrated with microfluidic channels for solution exchange. Lab on A Chip, 2013, 13, 1476.	6.0	40
96	Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles. Analytical Chemistry, 2016, 88, 1111-1116.	6.5	40
97	Vertical Flow Lithography for Fabrication of 3D Anisotropic Particles. Small, 2015, 11, 6391-6396.	10.0	37
98	Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices. Sensors and Actuators B: Chemical, 2018, 274, 491-500.	7.8	37
99	Gasâ€permeable membranes and coâ€culture with fibroblasts enable highâ€density hepatocyte culture as multilayered liver tissues. Biotechnology Progress, 2011, 27, 1146-1153.	2.6	36
100	CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomedical Optics Express, 2014, 5, 3859.	2.9	36
101	Construction of 3D, Layered Skin, Microsized Tissues by Using Cell Beads for Cellular Function Analysis. Advanced Healthcare Materials, 2013, 2, 261-265.	7.6	34
102	Neural stem/progenitor cellâ€laden microfibers promote transplant survival in a mouse transected spinal cord injury model. Journal of Neuroscience Research, 2015, 93, 1826-1838.	2.9	34
103	Rodâ€Shaped Neural Units for Aligned 3D Neural Network Connection. Advanced Healthcare Materials, 2017, 6, 1700143.	7.6	34
104	Selective drive of electrostatic actuators using remote inductive powering. Sensors and Actuators A: Physical, 2002, 95, 269-273.	4.1	33
105	Logic Gate Operation by DNA Translocation through Biological Nanopores. PLoS ONE, 2016, 11, e0149667.	2.5	33
106	Mass Production of Cell‣aden Calcium Alginate Particles with Centrifugal Force. Advanced Healthcare Materials, 2017, 6, 1601375.	7.6	33
107	Rapid aggregation of heterogeneous cells and multiple-sized microspheres in methylcellulose medium. Biomaterials, 2012, 33, 4508-4514.	11.4	32
108	Centrifuge-based cell encapsulation in hydrogel microbeads using sub-microliter sample solution. RSC Advances, 2014, 4, 30480.	3.6	31

#	Article	IF	CITATIONS
109	Lipid Bilayers on a Picoliter Microdroplet Array for Rapid Fluorescence Detection of Membrane Transport. Small, 2014, 10, 3275-3282.	10.0	31
110	Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions. Advanced Healthcare Materials, 2016, 5, 1104-1111.	7.6	31
111	3D Tissue Formation of Unilocular Adipocytes in Hydrogel Microfibers. Advanced Healthcare Materials, 2016, 5, 548-556.	7.6	31
112	Electrophysiological measurement of ion channels on plasma/organelle membranes using an on-chip lipid bilayer system. Scientific Reports, 2018, 8, 17498.	3.3	31
113	A resettable dynamic microarray device. Biomedical Microdevices, 2011, 13, 1089-1094.	2.8	29
114	A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing. Lab on A Chip, 2012, 12, 5155.	6.0	29
115	Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism. Analytical Chemistry, 2015, 87, 7588-7594.	6.5	29
116	Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Scientific Reports, 2017, 7, 2850.	3.3	29
117	3D arrays of microcages by two-photon lithography for spatial organization of living cells. Lab on A Chip, 2019, 19, 875-884.	6.0	29
118	Biofabricating murine and human myoâ€substitutes for rapid volumetric muscle loss restoration. EMBO Molecular Medicine, 2021, 13, e12778.	6.9	29
119	Improvement in the Mechanical Properties of Cell-Laden Hydrogel Microfibers Using Interpenetrating Polymer Networks. ACS Biomaterials Science and Engineering, 2017, 3, 392-398.	5.2	27
120	Multi-Component Microscaffold With 3D Spatially Defined Proteinaceous Environment. ACS Biomaterials Science and Engineering, 2017, 3, 487-494.	5.2	27
121	Establishment of self-organization system in rapidly formed multicellular heterospheroids. Biomaterials, 2011, 32, 6059-6067.	11.4	26
122	Hydrogel Glucose Sensor with InÂVivo Stable Fluorescence Intensity Relying on Antioxidant Enzymes for Continuous Glucose Monitoring. IScience, 2020, 23, 101243.	4.1	26
123	A parylene lift-off process with microfluidic channels for selective protein patterning. Journal of Micromechanics and Microengineering, 2007, 17, 496-500.	2.6	25
124	Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Experimental Cell Research, 2018, 370, 168-173.	2.6	25
125	Biomolecular linear motors confined to move upon micro-patterns on glass. Journal of Micromechanics and Microengineering, 2006, 16, 1550-1554.	2.6	24
126	Parylene Mobile Microplates Integrated with an Enzymatic Release for Handling of Single Adherent Cells. Small, 2014, 10, 912-921.	10.0	24

#	Article	IF	CITATIONS
127	Microfluidics based synthesis of coiled hydrogel microfibers with flexible shape and dimension control. Sensors and Actuators B: Chemical, 2017, 246, 358-362.	7.8	24
128	Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device. Langmuir, 2017, 33, 5393-5397.	3.5	24
129	Centrifuge-based step emulsification device for simple and fast generation of monodisperse picoliter droplets. Sensors and Actuators B: Chemical, 2019, 301, 127164.	7.8	24
130	Microfabricated mobile microplates for handling single adherent cells. Journal of Micromechanics and Microengineering, 2008, 18, 095003.	2.6	23
131	Formation of Highly Aligned Collagen Nanofibers by Continuous Cyclic Stretch of a Collagen Hydrogel Sheet. Macromolecular Bioscience, 2016, 16, 995-1000.	4.1	23
132	Enhanced bile canaliculi formation enabling direct recovery of biliary metabolites of hepatocytes in 3D collagen gel microcavities. Lab on A Chip, 2012, 12, 1857.	6.0	22
133	Fabrication of microchannel networks in multicellular spheroids. Sensors and Actuators B: Chemical, 2014, 198, 249-254.	7.8	22
134	Fabrication of submicron proteinaceous structures by direct laser writing. Applied Physics Letters, 2015, 107, .	3.3	22
135	Longâ€∓erm Continuous Glucose Monitoring Using a Fluorescenceâ€Based Biocompatible Hydrogel Glucose Sensor. Advanced Healthcare Materials, 2021, 10, e2001286.	7.6	22
136	Fabrication method for out-of-plane, micro-coil by surface micromachining. Sensors and Actuators A: Physical, 2002, 97-98, 702-708.	4.1	21
137	Lipid-Coated Microdroplet Array for in Vitro Protein Synthesis. Analytical Chemistry, 2011, 83, 3186-3191.	6.5	21
138	Round-tip dielectrophoresis-based tweezers for single micro-object manipulation. Biosensors and Bioelectronics, 2013, 47, 206-212.	10.1	21
139	Self-generation of two-dimensional droplet array using oil–water immiscibility and replacement. Lab on A Chip, 2018, 18, 1130-1137.	6.0	21
140	Assembly and Connection of Micropatterned Single Neurons for Neuronal Network Formation. Micromachines, 2018, 9, 235.	2.9	21
141	Artificial flagellates: Analysis of advancing motions of biflagellate micro-objects. Applied Physics Letters, 2010, 96, .	3.3	20
142	A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets. Journal of Micromechanics and Microengineering, 2011, 21, 054031.	2.6	20
143	Mobile Microplates for Morphological Control and Assembly of Individual Neural Cells. Advanced Healthcare Materials, 2016, 5, 415-420.	7.6	20
144	Biohybrid sensor for odor detection. Lab on A Chip, 2021, 21, 2643-2657.	6.0	20

#	Article	IF	CITATIONS
145	MEMS technology for nanobio research. Drug Discovery Today, 2008, 13, 989-996.	6.4	19
146	Biohybrid device with antagonistic skeletal muscle tissue for measurement of contractile force. Advanced Robotics, 2019, 33, 208-218.	1.8	19
147	A perfusable vascularized full-thickness skin model for potential topical and systemic applications. Biofabrication, 2021, 13, 035042.	7.1	19
148	Rapid and enhanced repolarization in sandwich-cultured hepatocytes on an oxygen-permeable membrane. Biochemical Engineering Journal, 2010, 52, 255-262.	3.6	17
149	Engineering of Pseudoislets: Effect on Insulin Secretion Activity by Cell Number, Cell Population, and Microchannel Networks. Transplantation Proceedings, 2014, 46, 1161-1165.	0.6	17
150	Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats. Biochemical and Biophysical Research Communications, 2016, 470, 753-758.	2.1	17
151	Mechanical Characterization of Microengineered Epithelial Cysts by Using Atomic Force Microscopy. Biophysical Journal, 2017, 112, 398-409.	0.5	17
152	Multicellular Biohybrid Materials: Probing the Interplay of Cells of Different Types Precisely Positioned and Constrained on 3D Wireframe‣ike Microstructures. Advanced Healthcare Materials, 2017, 6, 1601053.	7.6	17
153	Purification-Free MicroRNA Detection by Using Magnetically Immobilized Nanopores on Liposome Membrane. Analytical Chemistry, 2018, 90, 10217-10222.	6.5	17
154	Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for long-term glycemic control in diabetic mice. Biomaterials, 2020, 255, 120162.	11.4	17
155	Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nature Physics, 2021, 17, 794-800.	16.7	17
156	Generation of Femtoliter Reactor Arrays within a Microfluidic Channel for Biochemical Analysis. Analytical Chemistry, 2012, 84, 6346-6350.	6.5	16
157	Liquid-filled tunable lenticular lens. Journal of Micromechanics and Microengineering, 2015, 25, 035030.	2.6	16
158	Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells. Sensors and Actuators B: Chemical, 2018, 261, 392-397.	7.8	16
159	Formation of vesicles-in-a-vesicle with asymmetric lipid components using a pulsed-jet flow method. RSC Advances, 2019, 9, 30071-30075.	3.6	16
160	3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber. PLoS ONE, 2020, 15, e0234441.	2.5	16
161	Cell fibers promote proliferation of co-cultured cells on a dish. Scientific Reports, 2020, 10, 288.	3.3	16
162	CYK4 relaxes the bias in the off-axis motion by MKLP1 kinesin-6. Communications Biology, 2021, 4, 180.	4.4	16

#	Article	IF	CITATIONS
163	Wall-less liquid pathways formed with three-dimensional microring arrays. Applied Physics Letters, 2012, 101, .	3.3	15
164	Portable biohybrid odorant sensors using cell-laden collagen micropillars. Lab on A Chip, 2019, 19, 1971-1976.	6.0	15
165	Living skin on a robot. Matter, 2022, 5, 2190-2208.	10.0	15
166	An integrated system for enzymatic cleavage and electrostretching of freely-suspended single DNA molecules. Lab on A Chip, 2007, 7, 1738.	6.0	14
167	Micro-patterning of phosphorylcholine-based polymers in a microfluidic channel. Sensors and Actuators B: Chemical, 2010, 149, 177-183.	7.8	14
168	Formation of nano-sized lipid vesicles with asymmetric lipid components using a pulsed-jet flow method. Sensors and Actuators B: Chemical, 2021, 327, 128917.	7.8	14
169	3D printed microfluidic devices for lipid bilayer recordings. Lab on A Chip, 2022, 22, 890-898.	6.0	14
170	Electro-Optical Imaging Microscopy of Dye-Doped Artificial Lipidic Membranes. Biophysical Journal, 2009, 97, 2913-2921.	0.5	13
171	Magnetically Responsive Microflaps Reveal Cell Membrane Boundaries from Multiple Angles. Advanced Materials, 2014, 26, 2850-2856.	21.0	13
172	Quantitative analysis of cell-free synthesized membrane proteins at the stabilized droplet interface bilayer. Chemical Communications, 2018, 54, 12226-12229.	4.1	13
173	Formation of Branched and Chained Alginate Microfibers Using Theta-Glass Capillaries. Micromachines, 2018, 9, 303.	2.9	13
174	Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Frontiers in Immunology, 2020, 11, 520.	4.8	13
175	Fusion and Fission Control of Picoliterâ€Sized Microdroplets for Changing the Solution Concentration of Microreactors. Small, 2010, 6, 2374-2377.	10.0	12
176	Electrical Access to Lipid Bilayer Membrane Microchambers for Transmembrane Analysis. Journal of Microelectromechanical Systems, 2011, 20, 797-799.	2.5	12
177	Clustering triple microbeads in a dynamic microarray for timing-controllable bead-based reactions. Microfluidics and Nanofluidics, 2013, 14, 1039-1048.	2.2	12
178	A sensitive point-of-care testing chip utilizing superabsorbent polymer for the early diagnosis of infectious disease. Sensors and Actuators B: Chemical, 2017, 240, 881-886.	7.8	12
179	Repetitive formation of optically-observable planar lipid bilayers by rotating chambers on a microaperture. Lab on A Chip, 2016, 16, 2423-2426.	6.0	11
180	A pumpless solution exchange system for nanopore sensors. Biomicrofluidics, 2019, 13, 064104.	2.4	11

#	Article	IF	CITATIONS
181	Hydrodynamic accumulation of small molecules and ions into cell-sized liposomes against a concentration gradient. Communications Chemistry, 2020, 3, .	4.5	11
182	Core-shell gel wires for the construction of large area heterogeneous structures with biomaterials. , 2010, , .		10
183	Uniformly-sized giant liposome formation with gentle hydration. , 2011, , .		10
184	Observation and Manipulation of a Capillary Jet in a Centrifuge-Based Droplet Shooting Device. Micromachines, 2015, 6, 1526-1533.	2.9	10
185	Flexible silicon-polymer neural probe rigidified by dissolvable insertion vehicle for high-resolution neural recording with improved duration. , 2015, , .		10
186	Automatic generation system of cell-sized liposomes. Sensors and Actuators B: Chemical, 2019, 292, 57-63.	7.8	10
187	Vessel-like channels supported by poly-l-lysine tubes. Journal of Bioscience and Bioengineering, 2016, 122, 753-757.	2.2	9
188	Manufacturing of animal products by the assembly of microfabricated tissues. Essays in Biochemistry, 2021, 65, 611-623.	4.7	9
189	Regeneration-type nerve electrode using bundled microfluidic channels. Electronics and Communications in Japan, 2009, 92, 29-34.	0.5	8
190	Single-vesicle estimation of ATP-binding cassette transporters in microfluidic channels. Lab on A Chip, 2012, 12, 702-704.	6.0	8
191	Serial DNA relay in DNA logic gates by electrical fusion and mechanical splitting of droplets. PLoS ONE, 2017, 12, e0180876.	2.5	8
192	Ultra-smooth glass channels for bioassay with motor proteins. Analyst, The, 2004, 129, 850.	3.5	7
193	Flexible Regeneration-type Nerve Electrode with Integrated Microfluidic Channels. , 2006, , .		7
194	Infrared light induced patterning of proteins on ppNIPAM thermoresponsive thin films: a "protein laser printer― Lab on A Chip, 2010, 10, 1079.	6.0	7
195	Cells on arrays of microsprings: An approach to achieve triaxial control of substrate stiffness. , 2013, , .		7
196	Highâ€Resolution Vertical Observation of Intracellular Structure Using Magnetically Responsive Microplates. Small, 2016, 12, 3366-3373.	10.0	7
197	In Vitro Long-Term Performance Evaluation and Improvement in the Response Time of CMOS-Based Implantable Glucose Sensors. IEEE Design and Test, 2016, 33, 37-48.	1.2	7
198	Rapid and Resilient Detection of Toxin Pore Formation Using a Lipid Bilayer Array. Small, 2020, 16, e2005550.	10.0	7

#	Article	IF	CITATIONS
199	Three-dimensional co-culture of blood-brain barrier-composing cells in a culture insert with a collagen vitrigel membrane. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 500-504.	1.5	7
200	A dynamic microarray device for pairing and electrofusion of giant unilamellar vesicles. Sensors and Actuators B: Chemical, 2020, 311, 127922.	7.8	7
201	Lotus-root-shaped cell-encapsulated construct as a retrieval graft for long-term transplantation of human iPSC-derived β-cells. IScience, 2021, 24, 102309.	4.1	7
202	Microfluidic system for applying shear flow to endothelial cells on culture insert with collagen vitrigel membrane. Sensors and Actuators B: Chemical, 2021, 348, 130675.	7.8	7
203	Skeletal muscleâ€∎dipose cocultured tissue fabricated using cellâ€ŀaden microfibers and a hydrogel sheet. Biotechnology and Bioengineering, 2022, 119, 636-643.	3.3	7
204	A Cylindrical Molding Method for the Biofabrication of Plane-Shaped Skeletal Muscle Tissue. Micromachines, 2021, 12, 1411.	2.9	7
205	Flexible organic leds with parylene thin films for biological implants. , 2007, , .		6
206	Multilayers of hydrogels loaded with microparticles: a fast and simple approach for microarray manufacturing. Lab on A Chip, 2010, 10, 372-378.	6.0	6
207	Enzymatic Reaction in Droplets Manipulated with Liquid Dielectrophoresis. ChemPhysChem, 2012, 13, 3308-3312.	2.1	6
208	Pneumatic balloon actuator with tunable bending points. , 2015, , .		6
209	Balloon Pump with Floating Valves for Portable Liquid Delivery. Micromachines, 2016, 7, 39.	2.9	6
210	Surface modification for patterned cell growth on substrates with pronounced topographies using sacrificial photoresist and parylene-C peel-off. Journal of Micromechanics and Microengineering, 2016, 26, 095017.	2.6	6
211	Suppression of sloshing by utilizing surface energy and geometry in microliter cylindrical well. Sensors and Actuators B: Chemical, 2018, 258, 1036-1041.	7.8	6
212	Temporal Observation of Adipocyte Microfiber Using Anchoring Device. Micromachines, 2019, 10, 358.	2.9	6
213	Anchorageâ€dependent cell expansion in fiberâ€shaped microcarrier aggregates. Biotechnology Progress, 2019, 35, e2755.	2.6	6
214	Biohybrid systems: Borrowing from nature to make better machines. APL Bioengineering, 2020, 4, 020401.	6.2	6
215	Micro Device for Local Temperature Control under Microscope. IEEJ Transactions on Sensors and Micromachines, 2004, 124, 284-288.	0.1	6
216	Functional analysis of human brain endothelium using a microfluidic device integrating a cell culture insert. APL Bioengineering, 2022, 6, 016103.	6.2	6

#	Article	IF	CITATIONS
217	Role of Negatively Charged Lipids Achieving Rapid Accumulation of Water-Soluble Molecules and Macromolecules into Cell-Sized Liposomes against a Concentration Gradient. Langmuir, 2022, 38, 112-121.	3.5	6
218	Microfluidic Odorant Sensor with Frog Eggs Expressing Olfactory Receptors. , 2009, , .		5
219	Generation of lipid vesicles using microfluidic T-junctions with pneumatic valves. , 2010, , .		5
220	Ultra-high density protein spots achieved by on chip digitalized protein synthesis. Analyst, The, 2013, 138, 4663.	3.5	5
221	Nonlinear concentration gradients regulated by the width of channels for observation of half maximal inhibitory concentration (IC50) of transporter proteins. Analyst, The, 2015, 140, 5557-5562.	3.5	5
222	Decellularized Plant Leaves for 3D Cell Culturing. , 2019, , .		5
223	Perfusion Chamber for Observing a Liposome-Based Cell Model Prepared by a Water-in-Oil Emulsion Transfer Method. ACS Omega, 2020, 5, 19429-19436.	3.5	5
224	3D Biofabrication Using Living Cells for Applications in Biohybrid Sensors and Actuators. ACS Applied Bio Materials, 2020, 3, 8121-8126.	4.6	5
225	Cell-laden microfibers fabricated using <i>î¼l</i> cell-suspension. Biofabrication, 2020, 12, 045021.	7.1	5
226	Three-Dimensional Microassembly of Cell-Laden Microplates by in situ Gluing with Photocurable Hydrogels. International Journal of Automation Technology, 2014, 8, 95-101.	1.0	5
227	Rapid and Direct Cell-to-Cell Adherence Using Avidin-Biotin Binding System: Large Aggregate Formation in Suspension Culture and Small Tissue Element Formation Having a Precise Microstructure Using Optical Tweezers. Journal of Robotics and Mechatronics, 2010, 22, 619-622.	1.0	5
228	Bundled Microfluidic Channels for Nerve Regeneration Electrodes. , 2007, , .		4
229	Portable imaging system for onâ€site analysis using CMOS imager—microfluidic analysis and fluorescence imaging. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6, 97-100.	1.4	4
230	Towards artificial cell array system: Encapsulation and hydration technologies integrated in liposome array. , 2012, , .		4
231	Mechanically Adaptive Silicon-based Neural Probes for Chronic High-resolution Neural Recording. Procedia Engineering, 2015, 120, 952-955.	1.2	4
232	Photolithographic patterned surface forms size-controlled lipid vesicles. APL Bioengineering, 2018, 2, 016104.	6.2	4
233	Luer-lock valve: A pre-fabricated pneumatic valve for 3D printed microfluidic automation. Biomicrofluidics, 2020, 14, 044115.	2.4	4
234	Microfluidic Device for the Analysis of Angiogenic Sprouting under Bidirectional Biochemical Gradients. Micromachines, 2020, 11, 1049.	2.9	4

#	Article	IF	CITATIONS
235	In vitro proliferation and long-term preservation of functional primary rat hepatocytes in cell fibers. Scientific Reports, 2022, 12, .	3.3	4
236	3Dâ€Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis. Advanced Healthcare Materials, 2022, 11, .	7.6	4
237	Microfluidic formation of lipid bilayer array for membrane transport analysis. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	3
238	Nano-depth grooves formed through O2plasma etching in the presence of PTFE. Journal of Micromechanics and Microengineering, 2009, 19, 115032.	2.6	3
239	A rupture detection algorithm for the DNA translocation detection though biological nanopore. Procedia Engineering, 2010, 5, 796-799.	1.2	3
240	Selective retrieval of microparticles in microchambers using electrolytically generated bubbles for cell array applications. Sensors and Actuators B: Chemical, 2011, 159, 229-233.	7.8	3
241	Assembly of neural cell-laden microplates on a microfabricated breadboard. , 2014, , .		3
242	Electrical detection of pesticide vapors by biological nanopores with DNA aptamers. , 2015, , .		3
243	Skin-equivalent integrated with perfusable channels on curved surface. , 2015, , .		3
244	An inhalation anesthetic device for stereotaxic operation on mouse pups. Journal of Neuroscience Methods, 2015, 243, 63-67.	2.5	3
245	Membrane-integrated glass chip for two-directional observation of epithelial cells. Sensors and Actuators B: Chemical, 2021, 326, 128861.	7.8	3
246	Lipid bilayer on a microdroplet integrated with a patterned Ag/AgCl microelectrode for voltage-clamp fluorometry of membrane transport. Sensors and Actuators B: Chemical, 2021, 334, 129643.	7.8	3
247	A swimming robot actuated by cultured skeletal muscle tissue. Transactions of the JSME (in Japanese), 2020, 86, 20-00180-20-00180.	0.2	3
248	Cell fiber-based 3D tissue array for drug response assay. Scientific Reports, 2022, 12, 7870.	3.3	3
249	Single-biomolecule observation with micro one-way valves for rapid buffer exchange. Journal of Applied Physics, 2009, 105, 102016.	2.5	2
250	Arraying Single Adherent Cells by Microplate Self-Assembly. , 2009, , .		2
251	A parylene nanopore for stable planar lipid bilayer membranes. , 2010, , .		2
252	Biofilms in hydrogel core-shell fibers. , 2011, , .		2

#	Article	IF	CITATIONS
253	Cytotoxicity evaluation of reactive metabolites using rat liver homogenate microsome-encapsulated alginate gel microbeads. Journal of Bioscience and Bioengineering, 2011, 111, 454-458.	2.2	2
254	Easy and stable lipid bilayer formation: A droplets-contacting-method in parylene mircopores for multiple ion channel recordings. , 2011, , .		2
255	Molecular resolution of a dioleoyl-Sn-glycero-phosphocholine lipid bilayer in liquid by phase modulation atomic force microscopy. Applied Physics Letters, 2012, 101, 063117.	3.3	2
256	Nano bioresearch approach by microtechnology. Drug Discovery Today, 2013, 18, 552-559.	6.4	2
257	Logic gate using artificial cell-membrane: NAND operation by transmembrane DNA via a biological nanopore. , 2013, , .		2
258	Sequential Micro-assembly of Three Dimensional Biological Microstructures from Two Dimensional Cell-laden Micro-plates. Procedia CIRP, 2013, 5, 196-200.	1.9	2
259	Cell-laden hydrogel beads, fibers and plates for 3D tissue construction. , 2013, , .		2
260	High-topography surface functionalization based on parylene-C peel-off for patterned cell growth. , 2015, , .		2
261	Chemically responsive protein-photoresist hybrid actuator. , 2015, , .		2
262	CMOSâ€based implantable glucose monitoring device with improved performance and reduced invasiveness. Electronics Letters, 2015, 51, 738-740.	1.0	2
263	3D human cardiac muscle on a chip: Quantification of contractile force of human iPS-derived cardiomyocytes. , 2015, , .		2
264	Fabrication of 3D Cellular Tissue Utilizing MEMS Technologies. , 2015, , 177-202.		2
265	Versatile gel assembly on a chip. Nature, 2017, 541, 470-471.	27.8	2
266	Cells smell on a CMOS: A portable odorant detection system using cell-laden collagen pillars. , 2017, , .		2
267	Formation of vessel-like channel using alginate fiber as a sacrificial structure. , 2017, , .		2
268	Centrifuge-based membrane emulsification toward high-throughput generation of monodisperse liposomes. , 2017, , .		2
269	Sequential production of various types of asymmetric lipid vesicles using pulse jet flow. , 2017, , .		2
270	A Lipid-Bilayer-On-A-Cup Device for Pumpless Sample Exchange. Micromachines, 2020, 11, 1123.	2.9	2

#	Article	IF	CITATIONS
271	Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution. Micromachines, 2021, 12, 53.	2.9	2
272	Nanoreplica moulding of polyacrylamide hydrogels. Micro and Nano Letters, 2012, 7, 1108-1111.	1.3	2
273	Study of Automated Embryo Manipulation Using Dynamic Microarray:Trapping, Culture and Collection. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 245-251.	0.1	2
274	Quick and Easy Microchip Fabrication. Seibutsu Butsuri, 2010, 50, 038-041.	0.1	2
275	Two-Photon Direct Laser Writing for Proteinaceous Microstructures with Additional Sensitizer. Journal of Laser Micro Nanoengineering, 2017, 12, 80-85.	0.1	2
276	Biohybrid Soft Robots Driven by Contractions of Skeletal Muscle Tissue. Journal of Robotics and Mechatronics, 2022, 34, 260-262.	1.0	2
277	Observation of Self-Assembled Monolayer Using the Lateral Resonance of the Cantilever in the Contact and Noncontact Regions. Japanese Journal of Applied Physics, 2004, 43, 4533-4536.	1.5	1
278	"Housing" for cells in monodisperse microcages. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
279	A resettable dynamic microfluidic device. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
280	A selective release method using electrolytically generated bubbles for cell array applications. , 2009, , .		1
281	A Flexible Regeneration Microelectrode with Cell-Growth Guidance. , 2009, , .		1
282	Formation of Planar Lipid Bilayer Membranes and Vesicles using Microfluidic Technology. Behavior Research Methods, 2010, 11, 87-100.	4.0	1
283	Transplantation of a neurospheroid network onto the rat brain. , 2010, , .		1
284	Dielectrophoresis-based liposome delivery to a planar lipid membrane for efficient membrane protein reconstitution. , 2010, , .		1
285	Selective Capture and Transport of Lipid Vesicles by Using DNAs and Biomolecular Motors. , 2010, , .		1
286	Vesicles in a vesicle: Formation of a cell-sized vesicle containing small vesicles from two planar lipid bilayers using pulsed jet flow. , 2013, , .		1
287	Dissolvable mobile microplates for handling adherent cells. , 2013, , .		1
288	Contactless catch-and-release system for giant liposomes based on negative dielectrophoresis. , 2013, ,		1

1

#	Article	IF	CITATIONS
289	Mechanical cell pairing system by sliding parylene rails. , 2014, , .		1
290	Close-packed liquid-filled tunable microlens array. , 2014, , .		1
291	Centrifugal microfluidic system for multistep assay using small amount of various samples. Sensors and Actuators B: Chemical, 2014, 195, 281-286.	7.8	1
292	Batch release of monodisperse liposomes triggered by pulsed voltage stimulation. , 2014, , .		1
293	Micropatterning of bacterial cellulose as degradable substrate for cell culture. , 2014, , .		1
294	Direct laser writing of 3D protein structures with nanoscale feature sizes. , 2014, , .		1
295	Alignment of collagen nanofibers in 2D substrates using cyclic stretch. , 2015, , .		1
296	PDMS balloon pump with a microfluidic regulator for the continuous drug supply in low flow rate. , 2015, , .		1
297	Microfabricated liquid chamber utilizing solvent-drying for in-situ TEM imaging of nanoparticle self-assembly. , 2015, , .		1
298	Stretchable culture device of skin-equivalent with improved epidermis thickness. , 2016, , .		1
299	Microrna diagnosis using complementary DNA that brakes transit events through a biological nanopore. , 2016, , .		1
300	CORE-shell microparticles formation with centrifugal coaxial microfluidic device. , 2016, , .		1
301	Muscle-actuated biomimetic hydrogel-based 3D microskeleton. , 2017, , .		1
302	Fabrication of biocompatible fluorescent hydrogel for implantable continuous glucose monitoring device. , 2017, , .		1
303	Parylene based flexible glucose sensor using glucose-responsive fluorescent hydrogel. , 2017, , .		1
304	Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions. Advanced Healthcare Materials, 2018, 7, 1701208.	7.6	1
305	Handheld nanopore-based biosensing device. , 2018, , .		1

Nano-sized asymmetric lipid vesicles for drug carrier applications. , 2018, , .

#	Article	IF	CITATIONS
307	In Situ Glugose Monitoring in 3D-Cultured Skeletal Muscle Tissues. , 2019, , .		1
308	Vascularized Spheroid Array in a Microfluidic Channel. , 2019, , .		1
309	Continuous Glucose Monitoring of 3D Tissue Using a Perfusable Device. , 2019, , .		1
310	3D Microfluidic Device for Perfusion Culture of Spheroids. , 2020, , .		1
311	A Silicon Micro Probe Array on a Flexible Substrate for Neural Recording. IEEJ Transactions on Sensors and Micromachines, 2003, 123, 571-576.	0.1	1
312	Electrical Recording and Long-term Stability on Cell-sized Bilayer Lipid Membrane Microchambers. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 414-418.	0.1	1
313	MEMS technology for Artificial Cells. , 2007, , .		0
314	Assembly of single adherent cells on mobile microplates. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	0
315	Micro particle sorting using non-periodic structure of optical pattern. Proceedings of SPIE, 2009, , .	0.8	0
316	Electrical recording of lipid membrane in a microfluidic device. , 2009, , .		0
317	MEMS meets supramolecules: Aligning supramolecular fibers within hydrogel strand using a microfluidic channel. , 2010, , .		0
318	Handling adherent cells with magnetically functionalized microplates. , 2010, , .		0
319	Micropatterning of different kinds of biomaterials as a platform of a molecular communication system. , 2011, , .		0
320	3D microfluidics formed with hydrogel sacrificial structures. , 2012, , .		0
321	Solution exchange of droplet contacting lipid bilayer system. , 2012, , .		0
322	"Neural bypass" with hydrogel microfiber encapsulating neurons. , 2012, , .		0
323	Dierectrophoresis-based tweezers for cell-sized liposome manipulation. , 2012, , .		0
324	Self-assembly of cell springs using smooth muscle-like cells differentiated from multipotent cells. , 2013, , .		0

#	Article	IF	CITATIONS
325	Specially patterned and aligned neural bundle formed by neural stem cell microfibers. , 2013, , .		0
326	Neurospheroid array on a flexible substrate for cortical microstimulation. , 2013, , .		0
327	Pendant liposome system to access the internal solution. , 2013, , .		0
328	Cell membrane fibers for the platform of transmembrane protein analysis. , 2013, , .		0
329	Μm3× â^ž. , 2013, , .		0
330	Cell origami for cell-sheet engineering. , 2014, , .		0
331	Formation of cross-shaped Escherichia coli. , 2014, , .		0
332	Reconstitution and function of membrane proteins into asymmetric giant liposomes by using a pulsed jet flow. , 2014, , .		0
333	Highly packed liposome assemblies toward synthetic tissue. , 2014, , .		0
334	Origami microfluidics integrated with gold micropatterns. , 2015, , .		0
335	Rotational chambers on fluidic channels for the repetitive formation of optically observable lipid-bilayer membranes. , 2015, , .		0
336	Cell-laden hinged microplates for measuring the contractile forces of cardiomyocytes. , 2015, , .		0
337	Human adipose-derived stem cell fiber for breast reconstruction. , 2015, , .		0
338	3D culture of mouse iPSCs in hydrogel core-shell microfibers. , 2015, , .		0
339	Liposome arrangement connected with avidin-biotin complex for constructing functional synthetic tissue. , 2015, , .		0
340	Stability of the microdroplets for portable biosensor. , 2016, 2016, 1918-1921.		0
341	Vibration-triggered self-assembly of caged droplets to construct a droplet interface bilayer network. , 2016, , .		0
342	Microfluidic fabrication of hydrogel-fiber-based 3D constructs utilizing liquid rope-coil effect. , 2016, , .		0

#	Article	IF	CITATIONS
343	Quantification of contractile property for functional drug testing with human iPS-derived cardiomyocytes. , 2016, , .		0
344	Catch a cell on a CMOS: Selective retrieval of single cell using a microplate technology performed on a CMOS imaging sensor. , 2016, , .		0
345	Circumferentially oriented collagen nanofibers on the cylindrical structure. , 2016, , .		0
346	Microfluidic formation of monodisperse tetra-PEG hydrogel microbeads for cell encapsulation. , 2016, , .		0
347	Muscle-actuated bio-hybrid mems by cell culture and differentiation on me tamaterial micro-scaffolds. , 2016, , .		0
348	Three-dimentional differentiation of human IPS cells through core-shell hydrogel microfiber. , 2016, ,		0
349	Dynamics of Giant Vesicles and Their Application as Artificial Cell-based Sensor. Bunseki Kagaku, 2016, 65, 715-727.	0.2	0
350	Spiral channel for fast and noise-free microrna detection. , 2017, , .		0
351	Volatile odorant detection by corneal epithelial cells using a perfusable fluidic chamber. , 2017, , .		0
352	Mechanical enhanced hydrogel fiber encapsulating cells for long-term transplantation. , 2017, , .		0
353	Microfluidic enabled rapid bioprinting of hydrogel Î $ h 4$ fiber based porous constructs. , 2017, , .		0
354	Highly efficient formation of droplet interface bilayers by using a microperforated separator. , 2017, , .		0
355	Automatic Planar Asymmetric Lipid Bilayer Membrane Formation toward Biological High-Throughput Assay. , 2018, 2018, 4496-4499.		0
356	Selective pairing and fusion of vesicles using dielectrophoretic tweezers. , 2018, , .		0
357	Engineering of Cell-sized Liposomes. Seibutsu Butsuri, 2018, 58, 291-296.	0.1	0
358	Fluorescent microparticles for continuous glucose monitoring inside 3D tissue constructs. , 2018, , .		0
359	Sidewall electrode-chamber for lipid bilayer formation suitable for rapid access of odors to lipid membrane. , 2018, , .		0

360 Microfluidic formation of multicore-shell cell-laden fibers. , 2018, , .

0

#	Article	IF	CITATIONS
361	Stacking 2D Droplet Arrays for 3D Configurable Droplet Network. , 2019, , .		0
362	Pumpless Solution Exchange for Repeatable Nanopore Biosensor Driven by Superabsorbent Polymer and Hydrostatic Pressure. , 2019, , .		0
363	Cell-Laden Microfiber as Growth Factor Supplier. , 2019, , .		Ο
364	Artificial cell membrane system for odorant sensor: development of solution exchange driven by superabsorbent polymer for repeatable detection. , 2019, , .		0
365	Quad Lipid Bilayer Module with 1-GΩ Series Resistors Toward Quantitative Stochastic-Biosensors. , 2019, , .		0
366	In Vitro Tissue Construction for Organ-on-a-Chip Applications. Bioanalysis, 2019, , 247-274.	0.1	0
367	Pairing and Electrofusion of Liposomes in a Dynamic Microarray Device. , 2019, , .		0
368	H2O Vapor Plasma for Bonding PDMS with Various Materials. , 2020, , .		0
369	Bubble-Assisted in-Situ Re-Formation of Artificial Bilayer. , 2020, , .		0
370	Stretchable and Perfusable Microfluidic Device for Cell Barrier Model. , 2020, , .		0
371	Fabrication of Hand-Driven Coaxsial Laminar Flow Devices. , 2020, , .		0
372	Lipid Bilayer Array: Rapid and Resilient Detection of Toxin Pore Formation Using a Lipid Bilayer Array (Small 49/2020). Small, 2020, 16, 2070268.	10.0	0
373	3D Pocket-Shape Dermis-Equivalent as a Skin Material for a Robotic Finger. , 2020, , .		0
374	Formation of Micro-Size Perfusable Channels in mm-Thick Muscle Tissue. , 2020, , .		0
375	Odorant Sensor Using Olfactory Receptor Reconstituted in a Lipid Bilayer Membrane with Gas Flow System. , 2020, , .		0
376	Micro Tissue Assembly for Co-Culturing 3D Skeletal Muscle and Adipose Tissues. , 2020, , .		0
377	Biohybrid Robot. Journal of the Robotics Society of Japan, 2021, 39, 310-313.	0.1	0
378	Artificial Cell Membrane Sensors with Membrane Proteins. Vacuum and Surface Science, 2021, 64, 162-167.	0.1	0

#	Article	IF	CITATIONS
379	Monolithic Fabrication of a Lipid Bilayer Device Using Stereolithography. , 2021, , .		0
380	Efficient Gas-to-Liquid Partition Using Gas-Flow Channels for Cell-Based Gaseous Odorant Detection. , 2021, , .		0
381	Living Skin as a Self-Repairable Covering Material for Robots. , 2021, , .		0
382	Ultra-small chamber for single-molecule detection of biological reaction. E-Journal of Surface Science and Nanotechnology, 2005, 3, 79-81.	0.4	0
383	Regeneration-Type Nerve Electrode Using Bundled Microfluidic Channels. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1544-1548.	0.2	0
384	Shape Control of Filamentous Motor Proteins for Bio-Nano Driving Units. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1504-1507.	0.2	0
385	Formation of Bilayer Lipid Membranes with Microfluidic Devices. Hyomen Kagaku, 2008, 29, 370-374.	0.0	0
386	NanoBio Research with Microfluidic Devices. IEEJ Transactions on Electronics, Information and Systems, 2009, 129, 208-212.	0.2	0
387	Dynamic Microarray Devices for the Observation of Paired Different Types of Beads. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 465-470.	0.1	0
388	Applications in Bio-related Research Fields. Journal of the Institute of Electrical Engineers of Japan, 2011, 131, 287-290.	0.0	0
389	Review of Fully Implantable Sensor using Glucose Responsive Fluorescence Hydrogel. IEEJ Transactions on Sensors and Micromachines, 2012, 132, 437-442.	0.1	0
390	Think Hybrid.(<連載講座>機械工å¦ã•21ä,−ç´€ã,'æ‹"ã'ã,‹ã•?(第9回)). Journal of the Society of Mecha	ar oca l Eng	ineers, 2013
391	An SMA Microelectrode for Insect Neural Recording. IEEJ Transactions on Sensors and Micromachines, 1999, 119, 641-647.	0.1	0
392	CMOS-Based Implantable Glucose Monitoring Device with Glucose-Responsive Fluorescent Hydrogel. , 2015, , .		0
393	The olfactory receptors for the volatile compound sensing technology. Journal of Japan Association on Odor Environment, 2015, 46, 182-190.	0.0	0
394	4.ä≌å·¥ç″èfžè†œä½œè£½ãëã,∙ãf³ã,°ãf«ã,≋,ªãf³ãfãf£ãfãf«è¯æ,¬. Electrochemistry, 2015, 83, 1096-1100.	1.4	0
395	Construction and Application of Three-Dimensional Cellular Tissues Assembled by Point-, Line-, and Plane-Shaped Cellular Building Blocks. IEEJ Transactions on Sensors and Micromachines, 2017, 137, 322-327.	0.1	Ο
396	Development of cell-based wireless odorant sensor. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2019, 2019.10, 19am3PN319.	0.0	0

#	Article	IF	CITATIONS
397	Application of fluid shear stress to engineered vascular wall using microchannel. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2019, 2019.10, 20am2PN307.	0.0	0
398	Reconstruction of human placental barrier on a chip. Drug Delivery System, 2019, 34, 261-267.	0.0	0
399	10.1063/1.5123316.1.,2019,,.		Ο
400	Quantitative signal analysis of a ligand-gated ion channel on a lipid bilayer using continuous-time wavelet transformation. , 2019, , .		0
401	High speed introduction of a liposome into the planar lipid bilayer using dielectrophoretic force. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2020, 2020, 1A1-N04.	0.0	Ο
402	Living dermis as a self-repairable coverage material for robots. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2020, 2020.11, 28A3-MN311.	0.0	0
403	Dielecrophoretic introduction of the membrane proteins into the BLM platforms for the electrophygiological analysis systems. , 2020, , .		0
404	Artificial cell membrane sensor using mosquito olfactory receptor. Journal of Japan Association on Odor Environment, 2022, 53, 17-24.	0.0	0
405	In Vitro Skeletal Muscle Tissue with Edible Hydrogel Toward Fabrication of Cultured Meat in Macroscopic Size. , 2022, , .		0
406	On-Site Formation of Lipid Bilayer Arrays with An Air/Liquid Interface. , 2022, , .		0
407	3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber. , 2020, 15, e0234441.		Ο
408	3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber. , 2020, 15, e0234441.		0
409	3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber. , 2020, 15, e0234441.		Ο
410	3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber. , 2020, 15, e0234441.		0