Qing-Long Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9312451/publications.pdf

Version: 2024-02-01

304743 289244 43 1,628 22 40 citations h-index g-index papers 47 47 47 1769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Symmetry in Cascade Chirality-Transfer Processes: A Catalytic Atroposelective Direct Arylation Approach to BINOL Derivatives. Journal of the American Chemical Society, 2016, 138, 5202-5205.	13.7	195
2	Rapid Synthesis of Fused Nâ€Heterocycles by Transitionâ€Metalâ€Free Electrophilic Amination of Arene CH Bonds. Angewandte Chemie - International Edition, 2014, 53, 2701-2705.	13.8	184
3	Diversity oriented synthesis of indole-based peri-annulated compounds via allylic alkylation reactions. Chemical Science, 2013, 4, 97-102.	7.4	137
4	Practical Organocatalytic Synthesis of Functionalized Nonâ€ <i>C</i> ₂ ‧ymmetrical Atropisomeric Biaryls. Angewandte Chemie - International Edition, 2016, 55, 566-571.	13.8	112
5	Aerobic, Transition-Metal-Free, Direct, and Regiospecific Mono-α-arylation of Ketones: Synthesis and Mechanism by DFT Calculations. Journal of the American Chemical Society, 2013, 135, 14048-14051.	13.7	91
6	N-Substituted 3(10 <i>H</i>)-Acridones as Visible-Light, Water-Soluble Photocatalysts: Aerobic Oxidative Hydroxylation of Arylboronic Acids. Journal of Organic Chemistry, 2017, 82, 5236-5241.	3.2	59
7	Current developments in pharmacological therapeutics for chronic constipation. Acta Pharmaceutica Sinica B, 2015, 5, 300-309.	12.0	58
8	C–H Bond Functionalization via [1,5]-Hydride Shift/Cyclization Sequence: Approach to Spiroindolenines. Journal of Organic Chemistry, 2015, 80, 1155-1162.	3.2	55
9	Enantioselective Synthesis of Tetrahydroisoquinolines via Iridium-Catalyzed Intramolecular Friedel–Crafts-Type Allylic Alkylation of Phenols. Organic Letters, 2012, 14, 2579-2581.	4.6	53
10	Construction of Oxadiazepines via Lewis Acid-Catalyzed Tandem 1,5-Hydride Shift/Cyclization. Journal of Organic Chemistry, 2015, 80, 9620-9627.	3.2	45
11	Palladium(0) atalyzed Intermolecular Allylic Dearomatization of Indoles by a Formal [4+2] Cycloaddition Reaction. Chemistry - A European Journal, 2016, 22, 11601-11604.	3.3	41
12	Highly Enantioselective Synthesis of Tetrahydrocarbolines <i>via</i> Iridium-Catalyzed Intramolecular Friedel–Crafts Type Allylic Alkylation Reactions. Organic Letters, 2013, 15, 5909-5911.	4.6	40
13	The Rh(<scp>ii</scp>)-catalyzed formal N–S bond insertion reaction of aryldiazoacetates into N-phenyl-sulfenyl phthalimide. Chemical Communications, 2016, 52, 6079-6082.	4.1	40
14	Tandem Ir-Catalyzed Allylic Substitution Reaction of Allyl Sulfinates and Isomerization. Organic Letters, 2010, 12, 800-803.	4.6	39
15	Direct Intermolecular C–H Functionalization Triggered by 1,5-Hydride Shift: Access to <i>N</i> -Arylprolinamides via Ugi-Type Reaction. Organic Letters, 2017, 19, 1566-1569.	4.6	36
16	Iridium-Catalyzed Enantioselective Allylic Substitution of $\langle i \rangle O \langle i \rangle$ -Allyl Carbamothioates. Journal of Organic Chemistry, 2010, 75, 4615-4618.	3.2	35
17	Visible-Light Induced Isoindoles Formation To Trigger Intermolecular Diels–Alder Reactions in the Presence of Air. Organic Letters, 2015, 17, 2684-2687.	4.6	33
18	Organocatalytic <i>Para</i> -Selective Amination of Phenols with Iminoquinone Monoacetals. Organic Letters, 2017, 19, 3823-3826.	4.6	29

#	Article	IF	CITATIONS
19	Synthesis and anti-inflammatory activity of saponin derivatives of $\hat{\Gamma}$ -oleanolic acid. European Journal of Medicinal Chemistry, 2021, 209, 112932.	5.5	25
20	Enantiomeric separations of α-aryl ketones with cyclofructan chiral stationary phases via high performance liquid chromatography and supercritical fluid chromatography. Journal of Chromatography A, 2016, 1427, 45-54.	3.7	24
21	Concise Synthesis of Spiro[indolineâ€3,2â€2â€pyrrolidine] and 1â€Azacarbazole Derivatives ⟨i⟩via⟨ i⟩ Copperâ€Catalyzed Cyclization of Indoles. Advanced Synthesis and Catalysis, 2017, 359, 2339-2344.	4.3	23
22	Intramolecular redox reaction for the synthesis of N-aryl pyrroles catalyzed by Lewis acids. Organic and Biomolecular Chemistry, 2014, 12, 9716-9719.	2.8	20
23	Asymmetric intramolecular oxa-Michael addition of activated $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones by chiral N-triflyl phosphoramide. Science Bulletin, 2010, 55, 1723-1725.	1.7	17
24	Iridiumâ€Catalyzed Enantioselective Allylic Alkylation of Methyl 2â€(4â€nitrophenylsulfonyl)acetate and Subsequent Transformations. Advanced Synthesis and Catalysis, 2012, 354, 2275-2282.	4.3	17
25	Dearomatization of Indole Derivatives <i>via</i> Palladiumâ€Catalyzed CH Bond Functionalization of Pyrroles: Convenient Construction of Spiroindolenines. Advanced Synthesis and Catalysis, 2016, 358, 1892-1896.	4.3	15
26	Discovery of Ubiquitin-Specific Protease 7 (USP7) Inhibitors with Novel Scaffold Structures by Virtual Screening, Molecular Dynamics Simulation, and Biological Evaluation. Journal of Chemical Information and Modeling, 2020, 60, 3255-3264.	5.4	15
27	Design, Synthesis, and Biological Evaluation of Triazolone Derivatives as Potent PPARαĴÎ Dual Agonists for the Treatment of Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry, 2022, 65, 2571-2592.	6.4	15
28	Transition metal-free direct dehydrogenative arylation of activated C(sp ³)–H bonds: synthetic ambit and DFT reactivity predictions. Chemical Science, 2018, 9, 7992-7999.	7.4	14
29	N-substituted-3(10H)-acridones as visible-light photosensitizers for organic photoredox catalysis. Tetrahedron, 2018, 74, 483-489.	1.9	13
30	Design, synthesis, and biological evaluation of a novel dual peroxisome proliferator-activated receptor alpha/delta agonist for the treatment of diabetic kidney disease through anti-inflammatory mechanisms. European Journal of Medicinal Chemistry, 2021, 218, 113388.	5.5	13
31	Concise Access to 1,2â€Pyrroleâ€Annulated Benzazepines through a BrÃ,nsted Acid Catalyzed Redoxâ€Neutral Domino Reaction. European Journal of Organic Chemistry, 2015, 2015, 6727-6733.	2.4	12
32	Quinone methides as [1, 5]-hydride acceptors: approach to N-aryl pyrroles. Tetrahedron, 2015, 71, 2839-2843.	1.9	11
33	A formal intermolecular $[4+2]$ cycloaddition reaction of 1,3-disubstituted indoles and alkylquinones. Organic and Biomolecular Chemistry, 2017, 15, 3472-3478.	2.8	10
34	Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction. Beilstein Journal of Organic Chemistry, 2014, 10, 2892-2896.	2.2	9
35	Approach to N-aryl pyrroles via diphenyl phosphate-catalyzed [1,5]-Hydride shift/isomerization reaction with indoles. Tetrahedron, 2015, 71, 4098-4101.	1.9	9
36	Separation of 2-naphthol atropisomers on cyclofructan-based chiral stationary phases. Journal of Liquid Chromatography and Related Technologies, 2016, 39, 710-717.	1.0	9

#	Article	lF	CITATIONS
37	Chiral Phosphoric Acid Catalyzed Asymmetric Desymmetrization of <i>para</i> PoparaOrganic Letters, 2021, 23, 7873-7877.	4.6	9
38	Discovery of Novel Small Molecule Inhibitors Disrupting the PCSK9-LDLR Interaction. Journal of Chemical Information and Modeling, 2021, 61, 5269-5279.	5.4	8
39	Reaction Pathways through a [1,5]â€Hydride Shift Triggered by Acids: Approach to Bridgedâ€Ring Heterocycles and Polycycles. European Journal of Organic Chemistry, 2017, 2017, 560-569.	2.4	7
40	Synthesis of indole-fused scaffolds via [3+3] cyclization reaction of 2-indolylmethanols with quinone imines. Tetrahedron, 2021, 77, 131742.	1.9	7
41	Copper-catalyzed intramolecular redox reaction: Asymmetric synthesis of chiral 2-(1H-pyrrol-1-yl)-mandelic acid esters. Tetrahedron, 2018, 74, 7480-7484.	1.9	1
42	Cu-Catalyzed Dimerization of Indole Derived Oxime Acetate for Synthesis of Biimidazo[1,2-a]indoles. Journal of Organic Chemistry, 2021, 86, 5518-5529.	3.2	1
43	Diversity Synthesis of Indole-derivatives via Catalyst Control Cyclization Reaction of 2-Indolylmethanols and Azonaphthalene. Organic and Biomolecular Chemistry, 2022, , .	2.8	0