Caroline S Harwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9312373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Genetic Study of <i>Nif</i> -Associated Genes in a Hyperthermophilic Methanogen. Microbiology Spectrum, 2022, 10, e0209321.	3.0	7
2	Rhodopseudomonas palustris. Trends in Microbiology, 2022, 30, 307-308.	7.7	5
3	CsrA-Controlled Proteins Reveal New Dimensions of Acinetobacter baumannii Desiccation Tolerance. Journal of Bacteriology, 2022, 204, e0047921.	2.2	7
4	Metabolic Reprogramming and Longevity in Quiescence. Annual Review of Microbiology, 2022, 76, 91-111.	7.3	13
5	The Wsp system of <i>Pseudomonas aeruginosa</i> links surface sensing and cell envelope stress. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117633119.	7.1	33
6	Structural basis for a bacterial Pip system plant effector recognition protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
7	Transposon sequencing analysis of Bradyrhizobium diazoefficiens 110spc4. Scientific Reports, 2021, 11, 13211.	3.3	11
8	Iron-Only and Vanadium Nitrogenases: Fail-Safe Enzymes or Something More?. Annual Review of Microbiology, 2020, 74, 247-266.	7.3	51
9	A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris. Applied and Environmental Microbiology, 2020, 86, .	3.1	8
10	Ribosome Purification from an α-proteobacterium and rRNA Analysis by Northern Blot. Bio-protocol, 2020, 10, e3835.	0.4	1
11	Charging State Analysis of Transfer RNA from an α-proteobacterium. Bio-protocol, 2020, 10, e3834.	0.4	2
12	Influence of Energy and Electron Availability on <i>In Vivo</i> Methane and Hydrogen Production by a Variant Molybdenum Nitrogenase. Applied and Environmental Microbiology, 2019, 85, .	3.1	11
13	Bacterial Longevity Requires Protein Synthesis and a Stringent Response. MBio, 2019, 10, .	4.1	17
14	Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph. MBio, 2019, 10, .	4.1	14
15	Functional divergence of annotated l-isoaspartate O-methyltransferases in an α-proteobacterium. Journal of Biological Chemistry, 2019, 294, 2854-5714.	3.4	6
16	Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. ELife, 2019, 8, .	6.0	96
17	Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds. Journal of Bacteriology, 2018, 200, .	2.2	85
18	A pathway for biological methane production using bacterial iron-only nitrogenase. Nature Microbiology, 2018, 3, 281-286.	13.3	131

#	Article	IF	CITATIONS
19	The path of electron transfer to nitrogenase in a phototrophic alphaâ€proteobacterium. Environmental Microbiology, 2018, 20, 2500-2508.	3.8	26
20	A plant-responsive bacterial-signaling system senses an ethanolamine derivative. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9785-9790.	7.1	33
21	A new era for electron bifurcation. Current Opinion in Chemical Biology, 2018, 47, 32-38.	6.1	54
22	Structural basis of transcriptional regulation by CouR, a repressor of coumarate catabolism, in Rhodopseudomonas palustris. Journal of Biological Chemistry, 2018, 293, 11727-11735.	3.4	10
23	"Hot Stuff― The Many Uses of a Radiolabel Assay in Detecting Acyl-Homoserine Lactone Quorum-Sensing Signals. Methods in Molecular Biology, 2018, 1673, 35-47.	0.9	8
24	Use of Nonradiochemical DNAse Footprinting to Analyze c-di-GMP Modulation of DNA-Binding Proteins. Methods in Molecular Biology, 2017, 1657, 303-315.	0.9	10
25	Genes essential for phototrophic growth by a purple alphaproteobacterium. Environmental Microbiology, 2017, 19, 3567-3578.	3.8	23
26	Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family. Journal of Bacteriology, 2017, 199, .	2.2	78
27	Molecular Basis of Bacterial Longevity. MBio, 2017, 8, .	4.1	22
28	<i>Burkholderia cenocepacia</i> integrates <i>cis</i> -2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13006-13011.	7.1	54
29	Assigning chemoreceptors to chemosensory pathways in <i>Pseudomonas aeruginosa</i> . Proceedings of the United States of America, 2017, 114, 12809-12814.	7.1	72
30	Genome Sequences of Eight Bacterial Species Found in Coculture with the Haptophyte Chrysochromulina tobin. Genome Announcements, 2016, 4, .	0.8	13
31	A polymorphism in the oxygen-responsive repressor PpsR2 confers a growth advantage to Rhodopseudomonas palustris under low light. Photosynthesis Research, 2016, 129, 199-204.	2.9	3
32	Clades of Photosynthetic Bacteria Belonging to the Genus <i>Rhodopseudomonas</i> Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression. MSystems, 2016, 1, .	3.8	9
33	Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10163-10167.	7.1	74
34	A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides. MBio, 2016, 7, .	4.1	23
35	Degradation of cyclic diguanosine monophosphate by a hybrid two-component protein protects <i>>Azoarcus</i> > sp. strain CIB from toluene toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13174-13179.	7.1	13
36	Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris. Journal of Bacteriology, 2016, 198, 867-876.	2.2	60

#	Article	IF	CITATIONS
37	Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E209-18.	7.1	160
38	FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa. Journal of Bacteriology, 2016, 198, 178-186.	2.2	79
39	Posttranslational modification of a vanadium nitrogenase. MicrobiologyOpen, 2015, 4, 597-603.	3.0	9
40	BadR and BadM Proteins Transcriptionally Regulate Two Operons Needed for Anaerobic Benzoate Degradation by Rhodopseudomonas palustris. Applied and Environmental Microbiology, 2015, 81, 4253-4262.	3.1	34
41	Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines. PLoS Pathogens, 2014, 10, e1004480.	4.7	132
42	David T. Gibson: From biodegradation to biocatalysis:. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16980-16981.	7.1	0
43	Apo-bacteriophytochromes modulate bacterial photosynthesis in response to low light. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E237-44.	7.1	25
44	Non-growing Rhodopseudomonas palustris Increases the Hydrogen Gas Yield from Acetate by Shifting from the Glyoxylate Shunt to the Tricarboxylic Acid Cycle. Journal of Biological Chemistry, 2014, 289, 1960-1970.	3.4	85
45	Role of Cyclic Di-GMP in Pseudomonas aeruginosa Biofilm Development. , 2014, , 156-172.		0
46	Applications of Stress Response Studies: Biofuel Production. , 2014, , 473-480.		0
47	Subcellular Clustering of the Phosphorylated WspR Response Regulator Protein Stimulates Its Diguanylate Cyclase Activity. MBio, 2013, 4, e00242-13.	4.1	114
48	Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18478-18483.	7.1	162
49	LuxR- and LuxI-Type Quorum-Sensing Circuits Are Prevalent in Members of the Populus deltoides Microbiome. Applied and Environmental Microbiology, 2013, 79, 5745-5752.	3.1	66
50	The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Research, 2012, 40, 7207-7218.	14.5	244
51	How Posttranslational Modification of Nitrogenase Is Circumvented in Rhodopseudomonas palustris Strains That Produce Hydrogen Gas Constitutively. Applied and Environmental Microbiology, 2012, 78, 1023-1032.	3.1	58
52	Identification of a <i>p</i> -Coumarate Degradation Regulon in Rhodopseudomonas palustris by Xpression, an Integrated Tool for Prokaryotic RNA-Seq Data Processing. Applied and Environmental Microbiology, 2012, 78, 6812-6818.	3.1	15
53	Anaerobic <i>p</i> -Coumarate Degradation by Rhodopseudomonas palustris and Identification of CouR, a MarR Repressor Protein That Binds <i>p</i> -Coumaroyl Coenzyme A. Journal of Bacteriology, 2012, 194, 1960-1967.	2.2	56
54	Surface sensing and lateral subcellular localization of <scp>WspA</scp> , the receptor in a chemosensoryâ€like system leading to câ€diâ€ <scp>GMP</scp> production. Molecular Microbiology, 2012, 86, 720-729.	2.5	145

#	Article	IF	CITATIONS
55	Self-produced exopolysaccharide is a signal that stimulates biofilm formation in <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20632-20636.	7.1	265
56	Evolutionary Relationships Among Antenna Proteins of Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, 2012, , 253-264.	1.0	4
57	Calvin Cycle Flux, Pathway Constraints, and Substrate Oxidation State Together Determine the H ₂ Biofuel Yield in Photoheterotrophic Bacteria. MBio, 2011, 2, .	4.1	101
58	Activity of the Rhodopseudomonas palustris p-Coumaroyl-Homoserine Lactone-Responsive Transcription Factor RpaR. Journal of Bacteriology, 2011, 193, 2598-2607.	2.2	45
59	Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont <i>Bradyrhizobium japonicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16765-16770.	7.1	104
60	Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7183-7188.	7.1	111
61	Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coatingâ€stabilized nongrowing photosynthetic <i>Rhodopseudomonas palustris</i> . Biotechnology Progress, 2010, 26, 907-918.	2.6	66
62	Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology, 2010, 21, 244-251.	6.6	188
63	FixK, a global regulator of microaerobic growth, controls photosynthesis in <i>Rhodopseudomonas palustris</i> . Molecular Microbiology, 2010, 75, 1007-1020.	2.5	55
64	Reversible <i>N</i> ^ε â€lysine acetylation regulates the activity of acylâ€CoA synthetases involved in anaerobic benzoate catabolism in <i>Rhodopseudomonas palustris</i> . Molecular Microbiology, 2010, 76, 874-888.	2.5	80
65	Production of Hydrogen Gas from Light and the Inorganic Electron Donor Thiosulfate by <i>Rhodopseudomonas palustris</i> . Applied and Environmental Microbiology, 2010, 76, 7717-7722.	3.1	84
66	Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the United States of America, 2010, 107, 11669-11675.	7.1	267
67	<i>Pseudomonas aeruginosa</i> Rugose Small-Colony Variants Have Adaptations That Likely Promote Persistence in the Cystic Fibrosis Lung. Journal of Bacteriology, 2009, 191, 3492-3503.	2.2	372
68	Degradation of Aromatic Compounds by Purple Nonsulfur Bacteria. Advances in Photosynthesis and Respiration, 2009, , 577-594.	1.0	10
69	Identification of FleQ from <i>Pseudomonas aeruginosa</i> as a câ€diâ€GMPâ€responsive transcription factor. Molecular Microbiology, 2008, 69, 376-389.	2.5	606
70	Characterization of Anaerobic Catabolism of p-Coumarate in Rhodopseudomonas palustris by Integrating Transcriptomics and Quantitative Proteomics. Molecular and Cellular Proteomics, 2008, 7, 938-948.	3.8	64
71	Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18543-18548.	7.1	131
72	Redirection of Metabolism for Biological Hydrogen Production. Applied and Environmental Microbiology, 2007, 73, 1665-1671.	3.1	149

#	Article	IF	CITATIONS
73	Identification of a Malate Chemoreceptor in Pseudomonas aeruginosa by Screening for Chemotaxis Defects in an Energy Taxis-Deficient Mutant. Applied and Environmental Microbiology, 2007, 73, 7793-7795.	3.1	67
74	Responses ofPseudomonas aeruginosato low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Molecular Microbiology, 2007, 65, 153-165.	2.5	263
75	Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Molecular Microbiology, 2007, 65, 582-582.	2.5	8
76	Subcellular location characteristics of the <i>Pseudomonas aeruginosa</i> GGDEF protein, WspR, indicate that it produces cyclicâ€diâ€GMP in response to growth on surfaces. Molecular Microbiology, 2007, 66, 1459-1473.	2.5	205
77	Title is missing!. , 2007, 23, 124.		8
78	Hydrogen Production by Photoreactive Nanoporous Latex Coatings of Nongrowing Rhodopseudomonas palustris CGA009. Biotechnology Progress, 2007, 23, 124-130.	2.6	69
79	Determination and Comparison of the Baseline Proteomes of the Versatile MicrobeRhodopseudomonaspalustrisunder Its Major Metabolic States. Journal of Proteome Research, 2006, 5, 287-298.	3.7	69
80	Rhodopseudomonas palustris CGA009 Has Two Functional ppsR Genes, Each of Which Encodes a Repressor of Photosynthesis Gene Expression. Biochemistry, 2006, 45, 14441-14451.	2.5	34
81	Two differentPseudomonas aeruginosachemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. Molecular Microbiology, 2006, 61, 106-118.	2.5	81
82	BadM Is a Transcriptional Repressor and One of Three Regulators That Control Benzoyl Coenzyme A Reductase Gene Expression in Rhodopseudomonas palustris. Journal of Bacteriology, 2006, 188, 8662-8665.	2.2	23
83	Regulation of Uptake Hydrogenase and Effects of Hydrogen Utilization on Gene Expression in Rhodopseudomonas palustris. Journal of Bacteriology, 2006, 188, 6143-6152.	2.2	111
84	The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology (United Kingdom), 2005, 151, 727-736.	1.8	64
85	Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris. Journal of Bacteriology, 2005, 187, 7784-7794.	2.2	154
86	A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14422-14427.	7.1	734
87	Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates. Molecular Microbiology, 2004, 55, 1151-1159.	2.5	22
88	Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 2004, 22, 55-61.	17.5	675
89	The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Molecular Microbiology, 2004, 51, 973-985.	2.5	341
90	Cluster II che Genes from Pseudomonas aeruginosa Are Required for an Optimal Chemotactic Response. Journal of Bacteriology, 2002, 184, 4374-4383.	2.2	111

#	Article	IF	CITATIONS
91	Metabolic Diversity in Aromatic Compound Utilization by Anaerobic Microbes. Annual Review of Microbiology, 2002, 56, 345-369.	7.3	205
92	Reductive, Coenzyme A-Mediated Pathway for 3-Chlorobenzoate Degradation in the Phototrophic Bacterium Rhodopseudomonas palustris. Applied and Environmental Microbiology, 2001, 67, 1396-1399.	3.1	56
93	An aerotaxis transducer gene fromPseudomonas putida. FEMS Microbiology Letters, 2000, 182, 177-183.	1.8	54
94	2-Hydroxycyclohexanecarboxyl Coenzyme A Dehydrogenase, an Enzyme Characteristic of the Anaerobic Benzoate Degradation Pathway Used by Rhodopseudomonas palustris. Journal of Bacteriology, 2000, 182, 2753-2760.	2.2	50
95	BenR, a XylS Homologue, Regulates Three Different Pathways of Aromatic Acid Degradation in Pseudomonas putida. Journal of Bacteriology, 2000, 182, 6339-6346.	2.2	138
96	HbaR, a 4-Hydroxybenzoate Sensor and FNR-CRP Superfamily Member, Regulates Anaerobic 4-Hydroxybenzoate Degradation by <i>Rhodopseudomonas palustris</i> . Journal of Bacteriology, 2000, 182, 100-106.	2.2	40
97	Signaling Components in Bacterial Locomotion and Sensory Reception. Journal of Bacteriology, 2000, 182, 1459-1471.	2.2	60
98	An aerotaxis transducer gene from Pseudomonas putida. FEMS Microbiology Letters, 2000, 182, 177-183.	1.8	2
99	NahY, a Catabolic Plasmid-Encoded Receptor Required for Chemotaxis of <i>Pseudomonas putida</i> to the Aromatic Hydrocarbon Naphthalene. Journal of Bacteriology, 1999, 181, 3310-3316.	2.2	130
100	BadR, a New MarR Family Member, Regulates Anaerobic Benzoate Degradation by <i>Rhodopseudomonas palustris</i> in Concert with AadR, an Fnr Family Member. Journal of Bacteriology, 1999, 181, 2102-2109.	2.2	92
101	Identification of a chemotaxis gene region fromPseudomonas putida. FEMS Microbiology Letters, 1998, 159, 267-273.	1.8	39
102	Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 1998, 22, 439-458.	8.6	305
103	Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 1998, 22, 439-458.	8.6	31
104	Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiology Letters, 1998, 159, 267-273.	1.8	2
105	2-Ketocyclohexanecarboxyl Coenzyme A Hydrolase, the Ring Cleavage Enzyme Required for Anaerobic Benzoate Degradation by Rhodopseudomonas palustris. Journal of Bacteriology, 1998, 180, 2330-2336.	2.2	58
106	THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITY. Annual Review of Microbiology, 1996, 50, 553-590.	7.3	915
107	Anaerobic Metabolism of Cyclohex-1-Ene-1-Carboxylate, a Proposed Intermediate of Benzoate Degradation, by <i>Rhodopseudomonas palustris</i> . Applied and Environmental Microbiology, 1994, 60, 1775-1782.	3.1	38
108	Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for Gram â^' bacteria. Gene, 1993, 133, 23-30.	2.2	173

#	Article	IF	CITATIONS
109	Regulation of benzoate-CoA ligase in <i>Rhodopseudomonas palustris</i> . FEMS Microbiology Letters, 1991, 83, 199-203.	1.8	167
110	Nitrogenase-Catalyzed Hydrogen Production by Purple Nonsulfur Photosynthetic Bacteria. , 0, , 259-271.		10